aboutsummaryrefslogtreecommitdiff
path: root/gmp-6.3.0/tests/rand/statlib.c
diff options
context:
space:
mode:
Diffstat (limited to 'gmp-6.3.0/tests/rand/statlib.c')
-rw-r--r--gmp-6.3.0/tests/rand/statlib.c836
1 files changed, 836 insertions, 0 deletions
diff --git a/gmp-6.3.0/tests/rand/statlib.c b/gmp-6.3.0/tests/rand/statlib.c
new file mode 100644
index 0000000..db05380
--- /dev/null
+++ b/gmp-6.3.0/tests/rand/statlib.c
@@ -0,0 +1,836 @@
+/* statlib.c -- Statistical functions for testing the randomness of
+ number sequences. */
+
+/*
+Copyright 1999, 2000 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library test suite.
+
+The GNU MP Library test suite is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 3 of the License,
+or (at your option) any later version.
+
+The GNU MP Library test suite is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
+Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */
+
+/* The theories for these functions are taken from D. Knuth's "The Art
+of Computer Programming: Volume 2, Seminumerical Algorithms", Third
+Edition, Addison Wesley, 1998. */
+
+/* Implementation notes.
+
+The Kolmogorov-Smirnov test.
+
+Eq. (13) in Knuth, p. 50, says that if X1, X2, ..., Xn are independent
+observations arranged into ascending order
+
+ Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n
+ Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n
+
+where F(x) = Pr(X <= x) = probability that (X <= x), which for a
+uniformly distributed random real number between zero and one is
+exactly the number itself (x).
+
+
+The answer to exercise 23 gives the following implementation, which
+doesn't need the observations to be sorted in ascending order:
+
+for (k = 0; k < m; k++)
+ a[k] = 1.0
+ b[k] = 0.0
+ c[k] = 0
+
+for (each observation Xj)
+ Y = F(Xj)
+ k = floor (m * Y)
+ a[k] = min (a[k], Y)
+ b[k] = max (b[k], Y)
+ c[k] += 1
+
+ j = 0
+ rp = rm = 0
+ for (k = 0; k < m; k++)
+ if (c[k] > 0)
+ rm = max (rm, a[k] - j/n)
+ j += c[k]
+ rp = max (rp, j/n - b[k])
+
+Kp = sqr (n) * rp
+Km = sqr (n) * rm
+
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "gmpstat.h"
+
+/* ks (Kp, Km, X, P, n) -- Perform a Kolmogorov-Smirnov test on the N
+ real numbers between zero and one in vector X. P is the
+ distribution function, called for each entry in X, which should
+ calculate the probability of X being greater than or equal to any
+ number in the sequence. (For a uniformly distributed sequence of
+ real numbers between zero and one, this is simply equal to X.) The
+ result is put in Kp and Km. */
+
+void
+ks (mpf_t Kp,
+ mpf_t Km,
+ mpf_t X[],
+ void (P) (mpf_t, mpf_t),
+ unsigned long int n)
+{
+ mpf_t Kt; /* temp */
+ mpf_t f_x;
+ mpf_t f_j; /* j */
+ mpf_t f_jnq; /* j/n or (j-1)/n */
+ unsigned long int j;
+
+ /* Sort the vector in ascending order. */
+ qsort (X, n, sizeof (__mpf_struct), mpf_cmp);
+
+ /* K-S test. */
+ /* Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n
+ Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n
+ */
+
+ mpf_init (Kt); mpf_init (f_x); mpf_init (f_j); mpf_init (f_jnq);
+ mpf_set_ui (Kp, 0); mpf_set_ui (Km, 0);
+ for (j = 1; j <= n; j++)
+ {
+ P (f_x, X[j-1]);
+ mpf_set_ui (f_j, j);
+
+ mpf_div_ui (f_jnq, f_j, n);
+ mpf_sub (Kt, f_jnq, f_x);
+ if (mpf_cmp (Kt, Kp) > 0)
+ mpf_set (Kp, Kt);
+ if (g_debug > DEBUG_2)
+ {
+ printf ("j=%lu ", j);
+ printf ("P()="); mpf_out_str (stdout, 10, 2, f_x); printf ("\t");
+
+ printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" ");
+ printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" ");
+ printf ("Kp="); mpf_out_str (stdout, 10, 2, Kp); printf ("\t");
+ }
+ mpf_sub_ui (f_j, f_j, 1);
+ mpf_div_ui (f_jnq, f_j, n);
+ mpf_sub (Kt, f_x, f_jnq);
+ if (mpf_cmp (Kt, Km) > 0)
+ mpf_set (Km, Kt);
+
+ if (g_debug > DEBUG_2)
+ {
+ printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" ");
+ printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" ");
+ printf ("Km="); mpf_out_str (stdout, 10, 2, Km); printf (" ");
+ printf ("\n");
+ }
+ }
+ mpf_sqrt_ui (Kt, n);
+ mpf_mul (Kp, Kp, Kt);
+ mpf_mul (Km, Km, Kt);
+
+ mpf_clear (Kt); mpf_clear (f_x); mpf_clear (f_j); mpf_clear (f_jnq);
+}
+
+/* ks_table(val, n) -- calculate probability for Kp/Km less than or
+ equal to VAL with N observations. See [Knuth section 3.3.1] */
+
+void
+ks_table (mpf_t p, mpf_t val, const unsigned int n)
+{
+ /* We use Eq. (27), Knuth p.58, skipping O(1/n) for simplicity.
+ This shortcut will result in too high probabilities, especially
+ when n is small.
+
+ Pr(Kp(n) <= s) = 1 - pow(e, -2*s^2) * (1 - 2/3*s/sqrt(n) + O(1/n)) */
+
+ /* We have 's' in variable VAL and store the result in P. */
+
+ mpf_t t1, t2;
+
+ mpf_init (t1); mpf_init (t2);
+
+ /* t1 = 1 - 2/3 * s/sqrt(n) */
+ mpf_sqrt_ui (t1, n);
+ mpf_div (t1, val, t1);
+ mpf_mul_ui (t1, t1, 2);
+ mpf_div_ui (t1, t1, 3);
+ mpf_ui_sub (t1, 1, t1);
+
+ /* t2 = pow(e, -2*s^2) */
+#ifndef OLDGMP
+ mpf_pow_ui (t2, val, 2); /* t2 = s^2 */
+ mpf_set_d (t2, exp (-(2.0 * mpf_get_d (t2))));
+#else
+ /* hmmm, gmp doesn't have pow() for floats. use doubles. */
+ mpf_set_d (t2, pow (M_E, -(2 * pow (mpf_get_d (val), 2))));
+#endif
+
+ /* p = 1 - t1 * t2 */
+ mpf_mul (t1, t1, t2);
+ mpf_ui_sub (p, 1, t1);
+
+ mpf_clear (t1); mpf_clear (t2);
+}
+
+static double x2_table_X[][7] = {
+ { -2.33, -1.64, -.674, 0.0, 0.674, 1.64, 2.33 }, /* x */
+ { 5.4289, 2.6896, .454276, 0.0, .454276, 2.6896, 5.4289} /* x^2 */
+};
+
+#define _2D3 ((double) .6666666666)
+
+/* x2_table (t, v, n) -- return chi-square table row for V in T[]. */
+void
+x2_table (double t[],
+ unsigned int v)
+{
+ int f;
+
+
+ /* FIXME: Do a table lookup for v <= 30 since the following formula
+ [Knuth, vol 2, 3.3.1] is only good for v > 30. */
+
+ /* value = v + sqrt(2*v) * X[p] + (2/3) * X[p]^2 - 2/3 + O(1/sqrt(t) */
+ /* NOTE: The O() term is ignored for simplicity. */
+
+ for (f = 0; f < 7; f++)
+ t[f] =
+ v +
+ sqrt (2 * v) * x2_table_X[0][f] +
+ _2D3 * x2_table_X[1][f] - _2D3;
+}
+
+
+/* P(p, x) -- Distribution function. Calculate the probability of X
+being greater than or equal to any number in the sequence. For a
+random real number between zero and one given by a uniformly
+distributed random number generator, this is simply equal to X. */
+
+static void
+P (mpf_t p, mpf_t x)
+{
+ mpf_set (p, x);
+}
+
+/* mpf_freqt() -- Frequency test using KS on N real numbers between zero
+ and one. See [Knuth vol 2, p.61]. */
+void
+mpf_freqt (mpf_t Kp,
+ mpf_t Km,
+ mpf_t X[],
+ const unsigned long int n)
+{
+ ks (Kp, Km, X, P, n);
+}
+
+
+/* The Chi-square test. Eq. (8) in Knuth vol. 2 says that if Y[]
+ holds the observations and p[] is the probability for.. (to be
+ continued!)
+
+ V = 1/n * sum((s=1 to k) Y[s]^2 / p[s]) - n */
+
+void
+x2 (mpf_t V, /* result */
+ unsigned long int X[], /* data */
+ unsigned int k, /* #of categories */
+ void (P) (mpf_t, unsigned long int, void *), /* probability func */
+ void *x, /* extra user data passed to P() */
+ unsigned long int n) /* #of samples */
+{
+ unsigned int f;
+ mpf_t f_t, f_t2; /* temp floats */
+
+ mpf_init (f_t); mpf_init (f_t2);
+
+
+ mpf_set_ui (V, 0);
+ for (f = 0; f < k; f++)
+ {
+ if (g_debug > DEBUG_2)
+ fprintf (stderr, "%u: P()=", f);
+ mpf_set_ui (f_t, X[f]);
+ mpf_mul (f_t, f_t, f_t); /* f_t = X[f]^2 */
+ P (f_t2, f, x); /* f_t2 = Pr(f) */
+ if (g_debug > DEBUG_2)
+ mpf_out_str (stderr, 10, 2, f_t2);
+ mpf_div (f_t, f_t, f_t2);
+ mpf_add (V, V, f_t);
+ if (g_debug > DEBUG_2)
+ {
+ fprintf (stderr, "\tV=");
+ mpf_out_str (stderr, 10, 2, V);
+ fprintf (stderr, "\t");
+ }
+ }
+ if (g_debug > DEBUG_2)
+ fprintf (stderr, "\n");
+ mpf_div_ui (V, V, n);
+ mpf_sub_ui (V, V, n);
+
+ mpf_clear (f_t); mpf_clear (f_t2);
+}
+
+/* Pzf(p, s, x) -- Probability for category S in mpz_freqt(). It's
+ 1/d for all S. X is a pointer to an unsigned int holding 'd'. */
+static void
+Pzf (mpf_t p, unsigned long int s, void *x)
+{
+ mpf_set_ui (p, 1);
+ mpf_div_ui (p, p, *((unsigned int *) x));
+}
+
+/* mpz_freqt(V, X, imax, n) -- Frequency test on integers. [Knuth,
+ vol 2, 3.3.2]. Keep IMAX low on this one, since we loop from 0 to
+ IMAX. 128 or 256 could be nice.
+
+ X[] must not contain numbers outside the range 0 <= X <= IMAX.
+
+ Return value is number of observations actually used, after
+ discarding entries out of range.
+
+ Since X[] contains integers between zero and IMAX, inclusive, we
+ have IMAX+1 categories.
+
+ Note that N should be at least 5*IMAX. Result is put in V and can
+ be compared to output from x2_table (v=IMAX). */
+
+unsigned long int
+mpz_freqt (mpf_t V,
+ mpz_t X[],
+ unsigned int imax,
+ const unsigned long int n)
+{
+ unsigned long int *v; /* result */
+ unsigned int f;
+ unsigned int d; /* number of categories = imax+1 */
+ unsigned int uitemp;
+ unsigned long int usedn;
+
+
+ d = imax + 1;
+
+ v = (unsigned long int *) calloc (imax + 1, sizeof (unsigned long int));
+ if (NULL == v)
+ {
+ fprintf (stderr, "mpz_freqt(): out of memory\n");
+ exit (1);
+ }
+
+ /* count */
+ usedn = n; /* actual number of observations */
+ for (f = 0; f < n; f++)
+ {
+ uitemp = mpz_get_ui(X[f]);
+ if (uitemp > imax) /* sanity check */
+ {
+ if (g_debug)
+ fprintf (stderr, "mpz_freqt(): warning: input insanity: %u, "\
+ "ignored.\n", uitemp);
+ usedn--;
+ continue;
+ }
+ v[uitemp]++;
+ }
+
+ if (g_debug > DEBUG_2)
+ {
+ fprintf (stderr, "counts:\n");
+ for (f = 0; f <= imax; f++)
+ fprintf (stderr, "%u:\t%lu\n", f, v[f]);
+ }
+
+ /* chi-square with k=imax+1 and P(x)=1/(imax+1) for all x.*/
+ x2 (V, v, d, Pzf, (void *) &d, usedn);
+
+ free (v);
+ return (usedn);
+}
+
+/* debug dummy to drag in dump funcs */
+void
+foo_debug ()
+{
+ if (0)
+ {
+ mpf_dump (0);
+#ifndef OLDGMP
+ mpz_dump (0);
+#endif
+ }
+}
+
+/* merit (rop, t, v, m) -- calculate merit for spectral test result in
+ dimension T, see Knuth p. 105. BUGS: Only valid for 2 <= T <=
+ 6. */
+void
+merit (mpf_t rop, unsigned int t, mpf_t v, mpz_t m)
+{
+ int f;
+ mpf_t f_m, f_const, f_pi;
+
+ mpf_init (f_m);
+ mpf_set_z (f_m, m);
+ mpf_init_set_d (f_const, M_PI);
+ mpf_init_set_d (f_pi, M_PI);
+
+ switch (t)
+ {
+ case 2: /* PI */
+ break;
+ case 3: /* PI * 4/3 */
+ mpf_mul_ui (f_const, f_const, 4);
+ mpf_div_ui (f_const, f_const, 3);
+ break;
+ case 4: /* PI^2 * 1/2 */
+ mpf_mul (f_const, f_const, f_pi);
+ mpf_div_ui (f_const, f_const, 2);
+ break;
+ case 5: /* PI^2 * 8/15 */
+ mpf_mul (f_const, f_const, f_pi);
+ mpf_mul_ui (f_const, f_const, 8);
+ mpf_div_ui (f_const, f_const, 15);
+ break;
+ case 6: /* PI^3 * 1/6 */
+ mpf_mul (f_const, f_const, f_pi);
+ mpf_mul (f_const, f_const, f_pi);
+ mpf_div_ui (f_const, f_const, 6);
+ break;
+ default:
+ fprintf (stderr,
+ "spect (merit): can't calculate merit for dimensions > 6\n");
+ mpf_set_ui (f_const, 0);
+ break;
+ }
+
+ /* rop = v^t */
+ mpf_set (rop, v);
+ for (f = 1; f < t; f++)
+ mpf_mul (rop, rop, v);
+ mpf_mul (rop, rop, f_const);
+ mpf_div (rop, rop, f_m);
+
+ mpf_clear (f_m);
+ mpf_clear (f_const);
+ mpf_clear (f_pi);
+}
+
+double
+merit_u (unsigned int t, mpf_t v, mpz_t m)
+{
+ mpf_t rop;
+ double res;
+
+ mpf_init (rop);
+ merit (rop, t, v, m);
+ res = mpf_get_d (rop);
+ mpf_clear (rop);
+ return res;
+}
+
+/* f_floor (rop, op) -- Set rop = floor (op). */
+void
+f_floor (mpf_t rop, mpf_t op)
+{
+ mpz_t z;
+
+ mpz_init (z);
+
+ /* No mpf_floor(). Convert to mpz and back. */
+ mpz_set_f (z, op);
+ mpf_set_z (rop, z);
+
+ mpz_clear (z);
+}
+
+
+/* vz_dot (rop, v1, v2, nelem) -- compute dot product of z-vectors V1,
+ V2. N is number of elements in vectors V1 and V2. */
+
+void
+vz_dot (mpz_t rop, mpz_t V1[], mpz_t V2[], unsigned int n)
+{
+ mpz_t t;
+
+ mpz_init (t);
+ mpz_set_ui (rop, 0);
+ while (n--)
+ {
+ mpz_mul (t, V1[n], V2[n]);
+ mpz_add (rop, rop, t);
+ }
+
+ mpz_clear (t);
+}
+
+void
+spectral_test (mpf_t rop[], unsigned int T, mpz_t a, mpz_t m)
+{
+ /* Knuth "Seminumerical Algorithms, Third Edition", section 3.3.4
+ (pp. 101-103). */
+
+ /* v[t] = min { sqrt (x[1]^2 + ... + x[t]^2) |
+ x[1] + a*x[2] + ... + pow (a, t-1) * x[t] is congruent to 0 (mod m) } */
+
+
+ /* Variables. */
+ unsigned int ui_t;
+ unsigned int ui_i, ui_j, ui_k, ui_l;
+ mpf_t f_tmp1, f_tmp2;
+ mpz_t tmp1, tmp2, tmp3;
+ mpz_t U[GMP_SPECT_MAXT][GMP_SPECT_MAXT],
+ V[GMP_SPECT_MAXT][GMP_SPECT_MAXT],
+ X[GMP_SPECT_MAXT],
+ Y[GMP_SPECT_MAXT],
+ Z[GMP_SPECT_MAXT];
+ mpz_t h, hp, r, s, p, pp, q, u, v;
+
+ /* GMP inits. */
+ mpf_init (f_tmp1);
+ mpf_init (f_tmp2);
+ for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++)
+ {
+ for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++)
+ {
+ mpz_init_set_ui (U[ui_i][ui_j], 0);
+ mpz_init_set_ui (V[ui_i][ui_j], 0);
+ }
+ mpz_init_set_ui (X[ui_i], 0);
+ mpz_init_set_ui (Y[ui_i], 0);
+ mpz_init (Z[ui_i]);
+ }
+ mpz_init (tmp1);
+ mpz_init (tmp2);
+ mpz_init (tmp3);
+ mpz_init (h);
+ mpz_init (hp);
+ mpz_init (r);
+ mpz_init (s);
+ mpz_init (p);
+ mpz_init (pp);
+ mpz_init (q);
+ mpz_init (u);
+ mpz_init (v);
+
+ /* Implementation inits. */
+ if (T > GMP_SPECT_MAXT)
+ T = GMP_SPECT_MAXT; /* FIXME: Lazy. */
+
+ /* S1 [Initialize.] */
+ ui_t = 2 - 1; /* NOTE: `t' in description == ui_t + 1
+ for easy indexing */
+ mpz_set (h, a);
+ mpz_set (hp, m);
+ mpz_set_ui (p, 1);
+ mpz_set_ui (pp, 0);
+ mpz_set (r, a);
+ mpz_pow_ui (s, a, 2);
+ mpz_add_ui (s, s, 1); /* s = 1 + a^2 */
+
+ /* S2 [Euclidean step.] */
+ while (1)
+ {
+ if (g_debug > DEBUG_1)
+ {
+ mpz_mul (tmp1, h, pp);
+ mpz_mul (tmp2, hp, p);
+ mpz_sub (tmp1, tmp1, tmp2);
+ if (mpz_cmpabs (m, tmp1))
+ {
+ printf ("***BUG***: h*pp - hp*p = ");
+ mpz_out_str (stdout, 10, tmp1);
+ printf ("\n");
+ }
+ }
+ if (g_debug > DEBUG_2)
+ {
+ printf ("hp = ");
+ mpz_out_str (stdout, 10, hp);
+ printf ("\nh = ");
+ mpz_out_str (stdout, 10, h);
+ printf ("\n");
+ fflush (stdout);
+ }
+
+ if (mpz_sgn (h))
+ mpz_tdiv_q (q, hp, h); /* q = floor(hp/h) */
+ else
+ mpz_set_ui (q, 1);
+
+ if (g_debug > DEBUG_2)
+ {
+ printf ("q = ");
+ mpz_out_str (stdout, 10, q);
+ printf ("\n");
+ fflush (stdout);
+ }
+
+ mpz_mul (tmp1, q, h);
+ mpz_sub (u, hp, tmp1); /* u = hp - q*h */
+
+ mpz_mul (tmp1, q, p);
+ mpz_sub (v, pp, tmp1); /* v = pp - q*p */
+
+ mpz_pow_ui (tmp1, u, 2);
+ mpz_pow_ui (tmp2, v, 2);
+ mpz_add (tmp1, tmp1, tmp2);
+ if (mpz_cmp (tmp1, s) < 0)
+ {
+ mpz_set (s, tmp1); /* s = u^2 + v^2 */
+ mpz_set (hp, h); /* hp = h */
+ mpz_set (h, u); /* h = u */
+ mpz_set (pp, p); /* pp = p */
+ mpz_set (p, v); /* p = v */
+ }
+ else
+ break;
+ }
+
+ /* S3 [Compute v2.] */
+ mpz_sub (u, u, h);
+ mpz_sub (v, v, p);
+
+ mpz_pow_ui (tmp1, u, 2);
+ mpz_pow_ui (tmp2, v, 2);
+ mpz_add (tmp1, tmp1, tmp2);
+ if (mpz_cmp (tmp1, s) < 0)
+ {
+ mpz_set (s, tmp1); /* s = u^2 + v^2 */
+ mpz_set (hp, u);
+ mpz_set (pp, v);
+ }
+ mpf_set_z (f_tmp1, s);
+ mpf_sqrt (rop[ui_t - 1], f_tmp1);
+
+ /* S4 [Advance t.] */
+ mpz_neg (U[0][0], h);
+ mpz_set (U[0][1], p);
+ mpz_neg (U[1][0], hp);
+ mpz_set (U[1][1], pp);
+
+ mpz_set (V[0][0], pp);
+ mpz_set (V[0][1], hp);
+ mpz_neg (V[1][0], p);
+ mpz_neg (V[1][1], h);
+ if (mpz_cmp_ui (pp, 0) > 0)
+ {
+ mpz_neg (V[0][0], V[0][0]);
+ mpz_neg (V[0][1], V[0][1]);
+ mpz_neg (V[1][0], V[1][0]);
+ mpz_neg (V[1][1], V[1][1]);
+ }
+
+ while (ui_t + 1 != T) /* S4 loop */
+ {
+ ui_t++;
+ mpz_mul (r, a, r);
+ mpz_mod (r, r, m);
+
+ /* Add new row and column to U and V. They are initialized with
+ all elements set to zero, so clearing is not necessary. */
+
+ mpz_neg (U[ui_t][0], r); /* U: First col in new row. */
+ mpz_set_ui (U[ui_t][ui_t], 1); /* U: Last col in new row. */
+
+ mpz_set (V[ui_t][ui_t], m); /* V: Last col in new row. */
+
+ /* "Finally, for 1 <= i < t,
+ set q = round (vi1 * r / m),
+ vit = vi1*r - q*m,
+ and Ut=Ut+q*Ui */
+
+ for (ui_i = 0; ui_i < ui_t; ui_i++)
+ {
+ mpz_mul (tmp1, V[ui_i][0], r); /* tmp1=vi1*r */
+ zdiv_round (q, tmp1, m); /* q=round(vi1*r/m) */
+ mpz_mul (tmp2, q, m); /* tmp2=q*m */
+ mpz_sub (V[ui_i][ui_t], tmp1, tmp2);
+
+ for (ui_j = 0; ui_j <= ui_t; ui_j++) /* U[t] = U[t] + q*U[i] */
+ {
+ mpz_mul (tmp1, q, U[ui_i][ui_j]); /* tmp=q*uij */
+ mpz_add (U[ui_t][ui_j], U[ui_t][ui_j], tmp1); /* utj = utj + q*uij */
+ }
+ }
+
+ /* s = min (s, zdot (U[t], U[t]) */
+ vz_dot (tmp1, U[ui_t], U[ui_t], ui_t + 1);
+ if (mpz_cmp (tmp1, s) < 0)
+ mpz_set (s, tmp1);
+
+ ui_k = ui_t;
+ ui_j = 0; /* WARNING: ui_j no longer a temp. */
+
+ /* S5 [Transform.] */
+ if (g_debug > DEBUG_2)
+ printf ("(t, k, j, q1, q2, ...)\n");
+ do
+ {
+ if (g_debug > DEBUG_2)
+ printf ("(%u, %u, %u", ui_t + 1, ui_k + 1, ui_j + 1);
+
+ for (ui_i = 0; ui_i <= ui_t; ui_i++)
+ {
+ if (ui_i != ui_j)
+ {
+ vz_dot (tmp1, V[ui_i], V[ui_j], ui_t + 1); /* tmp1=dot(Vi,Vj). */
+ mpz_abs (tmp2, tmp1);
+ mpz_mul_ui (tmp2, tmp2, 2); /* tmp2 = 2*abs(dot(Vi,Vj) */
+ vz_dot (tmp3, V[ui_j], V[ui_j], ui_t + 1); /* tmp3=dot(Vj,Vj). */
+
+ if (mpz_cmp (tmp2, tmp3) > 0)
+ {
+ zdiv_round (q, tmp1, tmp3); /* q=round(Vi.Vj/Vj.Vj) */
+ if (g_debug > DEBUG_2)
+ {
+ printf (", ");
+ mpz_out_str (stdout, 10, q);
+ }
+
+ for (ui_l = 0; ui_l <= ui_t; ui_l++)
+ {
+ mpz_mul (tmp1, q, V[ui_j][ui_l]);
+ mpz_sub (V[ui_i][ui_l], V[ui_i][ui_l], tmp1); /* Vi=Vi-q*Vj */
+ mpz_mul (tmp1, q, U[ui_i][ui_l]);
+ mpz_add (U[ui_j][ui_l], U[ui_j][ui_l], tmp1); /* Uj=Uj+q*Ui */
+ }
+
+ vz_dot (tmp1, U[ui_j], U[ui_j], ui_t + 1); /* tmp1=dot(Uj,Uj) */
+ if (mpz_cmp (tmp1, s) < 0) /* s = min(s,dot(Uj,Uj)) */
+ mpz_set (s, tmp1);
+ ui_k = ui_j;
+ }
+ else if (g_debug > DEBUG_2)
+ printf (", #"); /* 2|Vi.Vj| <= Vj.Vj */
+ }
+ else if (g_debug > DEBUG_2)
+ printf (", *"); /* i == j */
+ }
+
+ if (g_debug > DEBUG_2)
+ printf (")\n");
+
+ /* S6 [Advance j.] */
+ if (ui_j == ui_t)
+ ui_j = 0;
+ else
+ ui_j++;
+ }
+ while (ui_j != ui_k); /* S5 */
+
+ /* From Knuth p. 104: "The exhaustive search in steps S8-S10
+ reduces the value of s only rarely." */
+#ifdef DO_SEARCH
+ /* S7 [Prepare for search.] */
+ /* Find minimum in (x[1], ..., x[t]) satisfying condition
+ x[k]^2 <= f(y[1], ...,y[t]) * dot(V[k],V[k]) */
+
+ ui_k = ui_t;
+ if (g_debug > DEBUG_2)
+ {
+ printf ("searching...");
+ /*for (f = 0; f < ui_t*/
+ fflush (stdout);
+ }
+
+ /* Z[i] = floor (sqrt (floor (dot(V[i],V[i]) * s / m^2))); */
+ mpz_pow_ui (tmp1, m, 2);
+ mpf_set_z (f_tmp1, tmp1);
+ mpf_set_z (f_tmp2, s);
+ mpf_div (f_tmp1, f_tmp2, f_tmp1); /* f_tmp1 = s/m^2 */
+ for (ui_i = 0; ui_i <= ui_t; ui_i++)
+ {
+ vz_dot (tmp1, V[ui_i], V[ui_i], ui_t + 1);
+ mpf_set_z (f_tmp2, tmp1);
+ mpf_mul (f_tmp2, f_tmp2, f_tmp1);
+ f_floor (f_tmp2, f_tmp2);
+ mpf_sqrt (f_tmp2, f_tmp2);
+ mpz_set_f (Z[ui_i], f_tmp2);
+ }
+
+ /* S8 [Advance X[k].] */
+ do
+ {
+ if (g_debug > DEBUG_2)
+ {
+ printf ("X[%u] = ", ui_k);
+ mpz_out_str (stdout, 10, X[ui_k]);
+ printf ("\tZ[%u] = ", ui_k);
+ mpz_out_str (stdout, 10, Z[ui_k]);
+ printf ("\n");
+ fflush (stdout);
+ }
+
+ if (mpz_cmp (X[ui_k], Z[ui_k]))
+ {
+ mpz_add_ui (X[ui_k], X[ui_k], 1);
+ for (ui_i = 0; ui_i <= ui_t; ui_i++)
+ mpz_add (Y[ui_i], Y[ui_i], U[ui_k][ui_i]);
+
+ /* S9 [Advance k.] */
+ while (++ui_k <= ui_t)
+ {
+ mpz_neg (X[ui_k], Z[ui_k]);
+ mpz_mul_ui (tmp1, Z[ui_k], 2);
+ for (ui_i = 0; ui_i <= ui_t; ui_i++)
+ {
+ mpz_mul (tmp2, tmp1, U[ui_k][ui_i]);
+ mpz_sub (Y[ui_i], Y[ui_i], tmp2);
+ }
+ }
+ vz_dot (tmp1, Y, Y, ui_t + 1);
+ if (mpz_cmp (tmp1, s) < 0)
+ mpz_set (s, tmp1);
+ }
+ }
+ while (--ui_k);
+#endif /* DO_SEARCH */
+ mpf_set_z (f_tmp1, s);
+ mpf_sqrt (rop[ui_t - 1], f_tmp1);
+#ifdef DO_SEARCH
+ if (g_debug > DEBUG_2)
+ printf ("done.\n");
+#endif /* DO_SEARCH */
+ } /* S4 loop */
+
+ /* Clear GMP variables. */
+
+ mpf_clear (f_tmp1);
+ mpf_clear (f_tmp2);
+ for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++)
+ {
+ for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++)
+ {
+ mpz_clear (U[ui_i][ui_j]);
+ mpz_clear (V[ui_i][ui_j]);
+ }
+ mpz_clear (X[ui_i]);
+ mpz_clear (Y[ui_i]);
+ mpz_clear (Z[ui_i]);
+ }
+ mpz_clear (tmp1);
+ mpz_clear (tmp2);
+ mpz_clear (tmp3);
+ mpz_clear (h);
+ mpz_clear (hp);
+ mpz_clear (r);
+ mpz_clear (s);
+ mpz_clear (p);
+ mpz_clear (pp);
+ mpz_clear (q);
+ mpz_clear (u);
+ mpz_clear (v);
+
+ return;
+}