aboutsummaryrefslogtreecommitdiff
path: root/gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm
diff options
context:
space:
mode:
authorDuncan Wilkie <antigravityd@gmail.com>2023-11-18 06:11:09 -0600
committerDuncan Wilkie <antigravityd@gmail.com>2023-11-18 06:11:09 -0600
commit11da511c784eca003deb90c23570f0873954e0de (patch)
treee14fdd3d5d6345956d67e79ae771d0633d28362b /gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm
Initial commit.
Diffstat (limited to 'gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm')
-rw-r--r--gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm391
1 files changed, 391 insertions, 0 deletions
diff --git a/gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm b/gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm
new file mode 100644
index 0000000..eaa92eb
--- /dev/null
+++ b/gmp-6.3.0/mpn/x86/k6/aorsmul_1.asm
@@ -0,0 +1,391 @@
+dnl AMD K6 mpn_addmul_1/mpn_submul_1 -- add or subtract mpn multiple.
+
+dnl Copyright 1999-2003, 2005 Free Software Foundation, Inc.
+
+dnl This file is part of the GNU MP Library.
+dnl
+dnl The GNU MP Library is free software; you can redistribute it and/or modify
+dnl it under the terms of either:
+dnl
+dnl * the GNU Lesser General Public License as published by the Free
+dnl Software Foundation; either version 3 of the License, or (at your
+dnl option) any later version.
+dnl
+dnl or
+dnl
+dnl * the GNU General Public License as published by the Free Software
+dnl Foundation; either version 2 of the License, or (at your option) any
+dnl later version.
+dnl
+dnl or both in parallel, as here.
+dnl
+dnl The GNU MP Library is distributed in the hope that it will be useful, but
+dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+dnl for more details.
+dnl
+dnl You should have received copies of the GNU General Public License and the
+dnl GNU Lesser General Public License along with the GNU MP Library. If not,
+dnl see https://www.gnu.org/licenses/.
+
+include(`../config.m4')
+
+
+C cycles/limb
+C P5
+C P6 model 0-8,10-12 5.94
+C P6 model 9 (Banias) 5.51
+C P6 model 13 (Dothan) 5.57
+C P4 model 0 (Willamette)
+C P4 model 1 (?)
+C P4 model 2 (Northwood)
+C P4 model 3 (Prescott)
+C P4 model 4 (Nocona)
+C AMD K6 7.65-8.5 (data dependent)
+C AMD K7
+C AMD K8
+
+
+dnl K6: large multipliers small multipliers
+dnl UNROLL_COUNT cycles/limb cycles/limb
+dnl 4 9.5 7.78
+dnl 8 9.0 7.78
+dnl 16 8.4 7.65
+dnl 32 8.4 8.2
+dnl
+dnl Maximum possible unrolling with the current code is 32.
+dnl
+dnl Unrolling to 16 limbs/loop makes the unrolled loop fit exactly in a 256
+dnl byte block, which might explain the good speed at that unrolling.
+
+deflit(UNROLL_COUNT, 16)
+
+
+ifdef(`OPERATION_addmul_1', `
+ define(M4_inst, addl)
+ define(M4_function_1, mpn_addmul_1)
+ define(M4_function_1c, mpn_addmul_1c)
+',`ifdef(`OPERATION_submul_1', `
+ define(M4_inst, subl)
+ define(M4_function_1, mpn_submul_1)
+ define(M4_function_1c, mpn_submul_1c)
+',`m4_error(`Need OPERATION_addmul_1 or OPERATION_submul_1
+')')')
+
+MULFUNC_PROLOGUE(mpn_addmul_1 mpn_addmul_1c mpn_submul_1 mpn_submul_1c)
+
+
+C mp_limb_t mpn_addmul_1 (mp_ptr dst, mp_srcptr src, mp_size_t size,
+C mp_limb_t mult);
+C mp_limb_t mpn_addmul_1c (mp_ptr dst, mp_srcptr src, mp_size_t size,
+C mp_limb_t mult, mp_limb_t carry);
+C mp_limb_t mpn_submul_1 (mp_ptr dst, mp_srcptr src, mp_size_t size,
+C mp_limb_t mult);
+C mp_limb_t mpn_submul_1c (mp_ptr dst, mp_srcptr src, mp_size_t size,
+C mp_limb_t mult, mp_limb_t carry);
+C
+C The jadcl0()s in the unrolled loop makes the speed data dependent. Small
+C multipliers (most significant few bits clear) result in few carry bits and
+C speeds up to 7.65 cycles/limb are attained. Large multipliers (most
+C significant few bits set) make the carry bits 50/50 and lead to something
+C more like 8.4 c/l. With adcl's both of these would be 9.3 c/l.
+C
+C It's important that the gains for jadcl0 on small multipliers don't come
+C at the cost of slowing down other data. Tests on uniformly distributed
+C random data, designed to confound branch prediction, show about a 7%
+C speed-up using jadcl0 over adcl (8.93 versus 9.57 cycles/limb, with all
+C overheads included).
+C
+C In the simple loop, jadcl0() measures slower than adcl (11.9-14.7 versus
+C 11.0 cycles/limb), and hence isn't used.
+C
+C In the simple loop, note that running ecx from negative to zero and using
+C it as an index in the two movs wouldn't help. It would save one
+C instruction (2*addl+loop becoming incl+jnz), but there's nothing unpaired
+C that would be collapsed by this.
+C
+C Attempts at a simpler main loop, with less unrolling, haven't yielded much
+C success, generally running over 9 c/l.
+C
+C
+C jadcl0
+C ------
+C
+C jadcl0() being faster than adcl $0 seems to be an artifact of two things,
+C firstly the instruction decoding and secondly the fact that there's a
+C carry bit for the jadcl0 only on average about 1/4 of the time.
+C
+C The code in the unrolled loop decodes something like the following.
+C
+C decode cycles
+C mull %ebp 2
+C M4_inst %esi, disp(%edi) 1
+C adcl %eax, %ecx 2
+C movl %edx, %esi \ 1
+C jnc 1f /
+C incl %esi \ 1
+C 1: movl disp(%ebx), %eax /
+C ---
+C 7
+C
+C In a back-to-back style test this measures 7 with the jnc not taken, or 8
+C with it taken (both when correctly predicted). This is opposite to the
+C measurements showing small multipliers running faster than large ones.
+C Don't really know why.
+C
+C It's not clear how much branch misprediction might be costing. The K6
+C doco says it will be 1 to 4 cycles, but presumably it's near the low end
+C of that range to get the measured results.
+C
+C
+C In the code the two carries are more or less the preceding mul product and
+C the calculation is roughly
+C
+C x*y + u*b+v
+C
+C where b=2^32 is the size of a limb, x*y is the two carry limbs, and u and
+C v are the two limbs it's added to (being the low of the next mul, and a
+C limb from the destination).
+C
+C To get a carry requires x*y+u*b+v >= b^2, which is u*b+v >= b^2-x*y, and
+C there are b^2-(b^2-x*y) = x*y many such values, giving a probability of
+C x*y/b^2. If x, y, u and v are random and uniformly distributed between 0
+C and b-1, then the total probability can be summed over x and y,
+C
+C 1 b-1 b-1 x*y 1 b*(b-1) b*(b-1)
+C --- * sum sum --- = --- * ------- * ------- = 1/4
+C b^2 x=0 y=1 b^2 b^4 2 2
+C
+C Actually it's a very tiny bit less than 1/4 of course. If y is fixed,
+C then the probability is 1/2*y/b thus varying linearly between 0 and 1/2.
+
+
+ifdef(`PIC',`
+deflit(UNROLL_THRESHOLD, 9)
+',`
+deflit(UNROLL_THRESHOLD, 6)
+')
+
+defframe(PARAM_CARRY, 20)
+defframe(PARAM_MULTIPLIER,16)
+defframe(PARAM_SIZE, 12)
+defframe(PARAM_SRC, 8)
+defframe(PARAM_DST, 4)
+
+ TEXT
+ ALIGN(32)
+
+PROLOGUE(M4_function_1c)
+ pushl %esi
+deflit(`FRAME',4)
+ movl PARAM_CARRY, %esi
+ jmp L(start_nc)
+EPILOGUE()
+
+PROLOGUE(M4_function_1)
+ push %esi
+deflit(`FRAME',4)
+ xorl %esi, %esi C initial carry
+
+L(start_nc):
+ movl PARAM_SIZE, %ecx
+ pushl %ebx
+deflit(`FRAME',8)
+
+ movl PARAM_SRC, %ebx
+ pushl %edi
+deflit(`FRAME',12)
+
+ cmpl $UNROLL_THRESHOLD, %ecx
+ movl PARAM_DST, %edi
+
+ pushl %ebp
+deflit(`FRAME',16)
+ jae L(unroll)
+
+
+ C simple loop
+
+ movl PARAM_MULTIPLIER, %ebp
+
+L(simple):
+ C eax scratch
+ C ebx src
+ C ecx counter
+ C edx scratch
+ C esi carry
+ C edi dst
+ C ebp multiplier
+
+ movl (%ebx), %eax
+ addl $4, %ebx
+
+ mull %ebp
+
+ addl $4, %edi
+ addl %esi, %eax
+
+ adcl $0, %edx
+
+ M4_inst %eax, -4(%edi)
+
+ adcl $0, %edx
+
+ movl %edx, %esi
+ loop L(simple)
+
+
+ popl %ebp
+ popl %edi
+
+ popl %ebx
+ movl %esi, %eax
+
+ popl %esi
+ ret
+
+
+
+C -----------------------------------------------------------------------------
+C The unrolled loop uses a "two carry limbs" scheme. At the top of the loop
+C the carries are ecx=lo, esi=hi, then they swap for each limb processed.
+C For the computed jump an odd size means they start one way around, an even
+C size the other.
+C
+C VAR_JUMP holds the computed jump temporarily because there's not enough
+C registers at the point of doing the mul for the initial two carry limbs.
+C
+C The add/adc for the initial carry in %esi is necessary only for the
+C mpn_addmul/submul_1c entry points. Duplicating the startup code to
+C eliminate this for the plain mpn_add/submul_1 doesn't seem like a good
+C idea.
+
+dnl overlapping with parameters already fetched
+define(VAR_COUNTER, `PARAM_SIZE')
+define(VAR_JUMP, `PARAM_DST')
+
+L(unroll):
+ C eax
+ C ebx src
+ C ecx size
+ C edx
+ C esi initial carry
+ C edi dst
+ C ebp
+
+ movl %ecx, %edx
+ decl %ecx
+
+ subl $2, %edx
+ negl %ecx
+
+ shrl $UNROLL_LOG2, %edx
+ andl $UNROLL_MASK, %ecx
+
+ movl %edx, VAR_COUNTER
+ movl %ecx, %edx
+
+ shll $4, %edx
+ negl %ecx
+
+ C 15 code bytes per limb
+ifdef(`PIC',`
+ call L(pic_calc)
+L(here):
+',`
+ leal L(entry) (%edx,%ecx,1), %edx
+')
+ movl (%ebx), %eax C src low limb
+
+ movl PARAM_MULTIPLIER, %ebp
+ movl %edx, VAR_JUMP
+
+ mull %ebp
+
+ addl %esi, %eax C initial carry (from _1c)
+ jadcl0( %edx)
+
+
+ leal 4(%ebx,%ecx,4), %ebx
+ movl %edx, %esi C high carry
+
+ movl VAR_JUMP, %edx
+ leal (%edi,%ecx,4), %edi
+
+ testl $1, %ecx
+ movl %eax, %ecx C low carry
+
+ jz L(noswap)
+ movl %esi, %ecx C high,low carry other way around
+
+ movl %eax, %esi
+L(noswap):
+
+ jmp *%edx
+
+
+ifdef(`PIC',`
+L(pic_calc):
+ C See mpn/x86/README about old gas bugs
+ leal (%edx,%ecx,1), %edx
+ addl $L(entry)-L(here), %edx
+ addl (%esp), %edx
+ ret_internal
+')
+
+
+C -----------------------------------------------------------
+ ALIGN(32)
+L(top):
+deflit(`FRAME',16)
+ C eax scratch
+ C ebx src
+ C ecx carry lo
+ C edx scratch
+ C esi carry hi
+ C edi dst
+ C ebp multiplier
+ C
+ C 15 code bytes per limb
+
+ leal UNROLL_BYTES(%edi), %edi
+
+L(entry):
+forloop(`i', 0, UNROLL_COUNT/2-1, `
+ deflit(`disp0', eval(2*i*4))
+ deflit(`disp1', eval(disp0 + 4))
+
+Zdisp( movl, disp0,(%ebx), %eax)
+ mull %ebp
+Zdisp( M4_inst,%ecx, disp0,(%edi))
+ adcl %eax, %esi
+ movl %edx, %ecx
+ jadcl0( %ecx)
+
+ movl disp1(%ebx), %eax
+ mull %ebp
+ M4_inst %esi, disp1(%edi)
+ adcl %eax, %ecx
+ movl %edx, %esi
+ jadcl0( %esi)
+')
+
+ decl VAR_COUNTER
+
+ leal UNROLL_BYTES(%ebx), %ebx
+ jns L(top)
+
+
+ popl %ebp
+ M4_inst %ecx, UNROLL_BYTES(%edi)
+
+ popl %edi
+ movl %esi, %eax
+
+ popl %ebx
+ jadcl0( %eax)
+
+ popl %esi
+ ret
+
+EPILOGUE()