

 Common Rules for MIDI-CI Property
Exchange

Version 1.1
December 8, 2020

Document M2-103-UM
Published By:

Association of Musical Electronics Industry
http://www.amei.or.jp

and
The MIDI Association
https://www.midi.org

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 2 Dec. 8, 2020

PREFACE

The MIDI Capability Inquiry (MIDI-CI) [MMA03] specification defines mechanisms and a set
of Universal System Exclusive messages used for Property Exchange. However, it does not
define all the rules for Properties or devices that implement Property Exchange. This document,
the Common Rules for MIDI-CI Property Exchange, complements MIDI-CI by defining a set of
design rules for all Property Exchange Resources and Properties.

2020 Association of Musical Electronics Industry (AMEI)(Japan)
2020 MIDI Manufacturers Association Incorporated (MMA)(Worldwide except Japan)

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL,

INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

https://www.midi.org
http://www.amei.or.jp

https://www.midi.org/
http://www.amei.or.jp/

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 3 Dec. 8, 2020

Table of Contents

1. Introduction ... 6

1.1 Background: MIDI 2.0 and MIDI-CI ... 6
1.2 Property Exchange ... 6
1.3 Related Documents .. 6

1.3.1 MIDI Manufacturers Association Documents .. 6
1.3.2 External Documents .. 7

1.4 Terminology ... 7
Property Exchange Overview ... 9

1.5 Property Exchange Core Concepts and Mechanisms ... 9
1.6 Steps to Use Property Exchange: ... 10
1.7 PE Message Format .. 10
1.8 Content of Examples in This Specification .. 11

2. Example Minimal Implementation .. 12
3. Property Exchange: MIDI-CI SysEx Messages .. 15

3.1 Property Exchange Inquiries and Replies .. 15
3.1.1 Inquiry: Get Property Data .. 15
3.1.2 Inquiry: Set Property Data .. 15
3.1.3 All MIDI-CI Messages used for Property Exchange .. 15

3.2 Messages in Multiple Chunks .. 15
3.3 Request ID .. 16

4. Property Data Formats ... 18
4.1 General Rules for JSON Data in the Property Data Field .. 18

4.1.1 7-Bit Encoding of JSON String Values .. 18
4.1.2 Example of Unicode Escape Sequence in a String Value 18
4.1.3 CommonMark ... 19
4.1.4 Manufacturer-specific Properties .. 19

4.2 Non-JSON Data.. 19
4.3 Compression and Encoding Property Data .. 20

4.3.1 Mcoded7: 8-Bit to 7-Bit encoding .. 20
4.4 Order of Processing for Compression and/or Encoding... 21

4.4.1 Uncompressed and Unencoded JSON Property Data ... 21
4.4.2 Compressed and Encoded JSON Property Data ... 21
4.4.3 Encoded Non-JSON Property Data .. 21
4.4.4 Compressed and Encoded Non-JSON Property Data ... 21

5. Header Data ... 22
5.1 Header Format Restrictions .. 22

5.1.1 JSON Header Data Property Additional Rules ... 22

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 4 Dec. 8, 2020

5.2 Common Header Properties in a Request .. 22
5.3 Common Header Properties in a Reply .. 23
5.4 Reporting Status and Errors: Reply Header ... 23

5.4.1 Table of status codes used in a Reply message... 24
5.4.2 Other Error Mechanisms ... 25

5.5 Extra Header Property for Using Property Data which is Not JSON Data 25
5.6 Header Properties to be Defined in the Future ... 25

6. Resources ... 26
6.1 Resources Data Formats ... 26
6.2 Using Resources and Property Data ... 26
6.3 MMA/AMEI Defined Resources ... 27
6.4 Custom, Manufacturer/Device-Specific Resources ... 27
6.5 Resource ID .. 27
6.6 List Resources: Retrieving an Array of Objects ... 27

6.6.1 Property Data in a Reply to a List Resource Inquiry .. 28
6.6.2 Pagination ... 28

6.7 Simple Property Resources .. 29
7. Resources and Resource Data in a Device .. 31

7.1 ResourceList – Used Before Other PE Inquiries .. 31
7.2 Foundational Resources Defined in other Specifications: ... 31
7.3 Other Resources Defined in other Specifications: ... 31

8. Full and Partial SET Inquiries ... 33
8.1 Full SET Example: ... 33
8.2 Partial SET Examples: ... 34

9. Subscribing to Property Data ... 37
9.1 Extra Request Header Properties for Subscriptions ... 38

9.1.1 Selecting "partial", "full", or "notify" ... 39
9.2 Replying to Subscription Messages ... 39
9.3 Setting the Property Data when Sending the "command" Property with the Property
Value "full" ... 39

9.3.1 Example: Subscription to a Simple Property Resource .. 40
9.4 Example Set of Transactions with Initiator Subscribing to Responder Resources 40
9.5 Subscription End .. 43

10. Notify Message .. 45
10.1.1 Table of status codes used in a Notify message .. 45

10.2 Notify: Terminate Inquiry .. 45
10.3 Notify: Timeout Messages.. 45

10.3.1 Notify: Timeout Wait .. 45
10.3.2 Notify: Timeout Has Occurred ... 46

11. Resource Link Properties ... 47
11.1.1 Example of Using Links With a "resId" Property... 47
11.1.2 Example of Using Links Without a "resId" Property ... 48
11.1.3 Example of Using a "role" Property of a Link .. 49
11.1.4 Subscriptions and Linked Resources .. 49

12. Resource: ResourceList ... 51
12.1 Request ResourceList using Inquiry: Get Property Data.. 51
12.2 Property Data for ResourceList Returned via a Reply to Get Property Data Message
 51

12.2.1 Additional Properties for List Resources .. 52

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 5 Dec. 8, 2020

12.3 Minimized Listing of AMEI/MMA Defined Resources in ResourceList using Default
Values 53

12.3.1 Example: ResourceList Object for the ChannelList Resource 54
12.4 Schema Property for Manufacturer Specific JSON Resources 55

12.4.1 Including a Schema Property in the ResourceList .. 55
12.4.2 Providing a Reference to an Expanded JSON Schema in the ResourceList 55

12.5 Using Columns for List Resources ... 57
12.5.1 Example ResourceList Object Record Containing a "columns" Property 57
ChannelList Result for List Object Above .. 57

12.6 ResourceList properties for non-JSON Resources ... 58
12.6.1 Example Non-JSON Resource: ... 58

12.7 Extended Example of Property Data for ResourceList .. 59
12.8 JSON Schema for ResourceList ... 60

Revision History ... 61

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 6 Dec. 8, 2020

1. Introduction
1.1 Background: MIDI 2.0 and MIDI-CI
The MIDI-Capability Inquiry (MIDI-CI) specification (part of MIDI 2.0) defines an architecture
that allows devices with bidirectional communication to agree to use MIDI 2.0 capabilities.
These new capabilities extend MIDI 1.0 while carefully protecting backward compatibility.
MIDI-CI features “fall back” mechanisms so that if a device does not support new features,
MIDI continues to work as defined by MIDI 1.0.
Property Exchange is a set of MIDI-CI messages used to access a wide range of properties in
MIDI devices. The exchange of properties takes place between a MIDI-CI Initiator and a MIDI-
CI Responder.
This Common Rules for Property Exchange document provides a complement to the MIDI-CI
specification by defining details of the Property Exchange mechanism and rules for the data
payload in MIDI-CI Property Exchange messages. Further Property Exchange specifications
define schemas and various data payloads that use the rules in MIDI-CI and this document to
achieve specific tasks.

1.2 Property Exchange
Property Exchange is used to Discover, Get, and Set many properties including but not limited to
device configuration settings, a list of controllers and destinations, a list of programs with names
and other metadata, manufacturer, model number, and version.
Property Exchange can enable devices to auto map controllers, edit programs, change state and
also provide visual editors to DAW’s without any prior knowledge of the device and without
specifically crafted software. This means that devices could work on Windows, macOS, Linux,
iOS, Android, embedded operating systems, and web browsers and may provide tighter
interactions with DAWs and hardware controllers.
Property Exchange provides generalized access to device properties that might otherwise only be
accessible through custom applications. Custom applications may continue to provide a more
unique experience. However, the generalized mechanisms of Property Exchange allow
functionality between devices and applications that are not custom designed. Devices that use
Property Exchange are more likely to continue to function through underlying system upgrades,
with future devices unknown today, or on new platforms that appear in the marketplace.

1.3 Related Documents

1.3.1 MIDI Manufacturers Association Documents

[MMA01] Complete MIDI 1.0 Detailed Specification, Document Version 96.1, Third

Edition, Association of Musical Electronics Industry, http://www.amei.or.jp/, and
MIDI Manufacturers Association, https://www.midi.org/

[MMA02] MIDI 2.0 Specification Overview, Association of Musical Electronics Industry,

http://www.amei.or.jp/, and MIDI Manufacturers Association,
https://www.midi.org/

http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 7 Dec. 8, 2020

[MMA03] MIDI Capability Inquiry (MIDI-CI), Version 1.1, Association of Musical
Electronics Industry, http://www.amei.or.jp/, and MIDI Manufacturers
Association, https://www.midi.org/

[MMA04] MIDI-CI Property Exchange Foundational Resources: DeviceInfo,

ChannelList, JSONSchema, Association of Musical Electronics Industry,
http://www.amei.or.jp/, and MIDI Manufacturers Association,
https://www.midi.org/

1.3.2 External Documents

[EXT01] The JSON Data Interchange Syntax ECMA-404, https://www.ecma-

international.org/publications/standards/Ecma-404.htm

[EXT02] JavaScript Object Notation (JSON) Pointer RFC 6901,

https://tools.ietf.org/html/rfc6901

[EXT03] JSON Schema, Draft 4, 6, or 7 and subsequent revisions, https://json-schema.org/

[EXT04] CommonMark, Version 0.28, https://spec.commonmark.org/0.28/

[EXT05] Media Type Specifications and Registration Procedures RFC6838,

https://tools.ietf.org/html/rfc6838

[EXT06] Media Types, a list of media types registered by the Internet Assigned Numbers

Authority, http://www.iana.org/assignments/media-types/media-types.xhtml

[EXT07] ZLIB Compressed Data Format Specification version 3.3, RFC 1950

https://tools.ietf.org/html/rfc1950

1.4 Terminology

AMEI – Association of Musical Electronics Industry. Authority for MIDI Specifications in
Japan.

Chunk – A single System Exclusive message that is one segment of a complete Property
Exchange message which spans multiple System Exclusive messages.

Data Set – A complete Property Exchange message whether sent in one System Exclusive
message in single Chunk or in multiple Chunks.

Device – An entity, whether hardware or software, which can send and/or receive MIDI
messages.

Foundational Resource – A Resource which provides core Properties of a Device which are
critical or highly valuable to properly implement numerous other Resources.

http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://tools.ietf.org/html/rfc6901
https://json-schema.org/
https://spec.commonmark.org/0.28/
https://tools.ietf.org/html/rfc6838
http://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc1950

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 8 Dec. 8, 2020

MIDI 1.0 Specification – Complete MIDI 1.0 Detailed Specification, Document Version 96.1,
Third Edition [MMA01]

List Resource – A specific type of Resource that provides a list of objects in a JSON array.

MIDI 2.0 – The MIDI environment that encompasses all of MIDI 1.0, MIDI-CI, Universal MIDI
Packet, MIDI 2.0 Protocol, MIDI 2.0 Messages, and other extensions to MIDI as described in
AMEI and MMA specifications.

Mcoded7 - Data transferred over SysEx must be restricted to 7-bit bytes. Mcoded7 is a method
of converting 8-bit data into 7-bit data. See Section 4.3.1.

MIDI-CI – MIDI Capability Inquiry [MMA03], a specification published by MMA and AMEI.

MMA – MIDI Manufacturers Association. Authority for MIDI specifications worldwide except
Japan.

Pascal Case –The practice of writing phrases such that each word or abbreviation in the phrase
begins with a capital letter, with no intervening spaces or punctuation between words. Pascal
Case is sometimes called “UpperCamelCase”.

PE – Property Exchange, the subject of this specification, in which one device may access
Property Data from another device.

Property – A JSON key:value pair used by Property Exchange.

Property Key – The key in a JSON key:value pair used by Property Exchange.

Property Value – The value in a JSON key:value pair used by Property Exchange.

Property Data – A set of one or more Properties in a device which are accessible by Property
Exchange. Contained in the Property Data field of a MIDI-CI Property Exchange message.

Resource – A defined Property Data with an associated inquiry for accessing the Property Data.

Simple Property Resource – A specific type of Resource that defines only a single Property
which includes only a Property Value, without the Property Key, in the Property Data.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 9 Dec. 8, 2020

Property Exchange Overview
1.5 Property Exchange Core Concepts and Mechanisms
Inquiry and Reply

Property Exchange is a dialogue between two MIDI Devices using Inquiry messages and
matching Reply messages. These two Devices are the MIDI-CI Initiator and the MIDI-CI
Responder.

Start Up
1. Before two Devices can use Property Exchange, the Initiator enacts a Discovery

Transaction with the Responder. See the MIDI-CI specification [MMA03] for use of
the Discovery Transaction.

2. The two Devices use an Inquiry: Property Exchange Capabilities message and reply
to discover basic Property Exchange support capabilities of each of the two Devices.

3. An Initiator sends an Inquiry: Get Property Data message with a “ResourceList”
request to discover which Property Exchange features a Responder supports.

Get and Set
The core functions of Property Exchange are Getting and Setting a wide range of
properties or values of properties of an attached device using an Inquiry: Get Property
Data message and an Inquiry: Set Property Data message. These inquiries are messages
issued by the Initiator, with reply messages being returned by the Responder.

Subscriptions
The Initiator may subscribe to a Resource from the Responder (if the Responder reports
that the specific Resource is subscribable). When the subscribed Resource is changed on
the Responder, the Responder informs the Initiator by a Subscription message. The
subscription mechanism can also be used to keep the understanding of a Resource
synchronized between Initiator and Responder.

Resources
Inquiries use Resources that are defined by either the MMA/AMEI or the device
manufacturer to describe the Properties that can be retrieved and updated by Property
Exchange. Resource definitions include the intent, intelligence required to use them, and
how they relate with other Resources. Device manufacturers may decide which
Resources to implement. However, response to “ResourceList” (see Section 12) is
mandatory for all devices that support Property Exchange.

Property Data
When devices Get, Set or Subscribe to a Resource, the Property Data for the Resource is
the targeted data. The Resource defines the content of the Property Data.

Error Messages
Property Exchange defines a set of informative error messages that are returned in an
associated Reply message if an error occurred.
Property Exchange also defines a Notify message to report general errors when it is not
possible to send a more informative error message via a Reply message.
MIDI-CI also provides a NAK message that can be used with Property Exchange.

Data Formats – System Exclusive, JSON, and Other Data
Property Exchange is sent via MIDI-CI Universal System Exclusive messages. System
Exclusive SubID#2 of the System Exclusive determines the broad function of the
message. The payload of the message includes a Header Data field and a Property Data
Field. Header Data is JSON compliant, with defined restrictions. The Property Data may

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 10 Dec. 8, 2020

be by default JSON data with defined restrictions, or any other data format depending on
the definition of the Resource being used.

Use MIDI Messages Whenever Possible
Property Exchange has a "MIDI messages first" approach. If a method of changing a
setting can be accomplished by using a common MIDI message (such as a Program
Change or Control Change message) then the MIDI message method shall be used.

1.6 Steps to Use Property Exchange:
1. Perform a MIDI-CI Discovery Transaction (See MIDI-CI [MMA03] for details),

exchanging information to:
a. Get the MUID of both devices
b. Ensure both devices support Property Exchange
c. Get Manufacturer SysEx ID of both devices
d. Get Device Family of both devices
e. Get Device Family Model Number of both devices
f. Get Software Revision Level of both devices

2. Perform an Inquiry: Property Exchange Capabilities Transaction to get fundamental
details of Property Exchange Support

3. Perform an Inquiry: Get Property Data Transaction with a “ResourceList” Resource to
discover support for the desired Property Data.

4. Recommended but optional: Perform an Inquiry: Get Property Data Transaction with a
“DeviceInfo” Resource to get Property Data with fundamental information about the
Responder.

5. Recommended but optional: Perform an Inquiry: Get Property Data Transaction with a
“ChannelList” Resource to get Property Data with fundamental information about the
Responder.

6. Perform a Get, Set, or Subscribe Transaction with the desired Resource to use the
associated Property Data.

Repeat Step 6 whenever necessary to use other desired Resources (Steps 1 to 5 are only needed
once if the Initiator can store the information discovered in those Steps).

1.7 PE Message Format
Property Exchange messages are in the following format:

Value Parameter Notes

F0 System Exclusive Start MIDI-CI Universal System Exclusive
fields.

SubID#2: determines the function of
the message. Property Exchange
messages = 0x30-3F

Source MUID: The MUID of the
device sending this message.

7E Universal System Exclusive

7F 7F = to/from whole MIDI Port

0D Universal System Exclusive Sub ID #1: MIDI-CI

1 byte Universal System Exclusive Sub ID #2:

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 11 Dec. 8, 2020

4 bytes Destination MUID (LSB first) Destination MUID: The MUID of the
device intended to receive this
message.

See MIDI-CI Specification [MMA03]

1 byte Request ID See MIDI-CI Specification [MMA03].
Also see Section 3.3.

2 bytes Number of Bytes for Header Data in this Chunk
(nh)

Header Data, JSON compliant with
defined restrictions.

See Section 5.1 nh bytes Header Data

2 bytes Number of Chunks in Data Set
0x0000 = Number of Chunks in Data Set is
Unknown

These fields track the separate but
associated Inquiry and Reply Messages

See MIDI-CI Specification [MMA03]
Also See Section 3.2 2 bytes Number of This Chunk (count starts from 0x0001)

2 bytes Number of Bytes for Property Data in this Chunk
(nd)

Property Data: Resource determines
the format of the data:

1. JSON Compliant Data with
defined restrictions

2. Other Data
Data compression is optional

See Section 4.1

nd bytes Property Data

F7 End Universal System Exclusive End

1.8 Content of Examples in This Specification

Examples throughout the remainder of this specification do not include all the fields of the
message as shown above in Section 1.7. Most examples only show the contents of the Header
Data Field and/or the contents of the Property Data Field.

Examples are designed to show implementation concepts and do not always use specification-
defined content. Resources and Property Data shown may be fictitious or hypothetical examples.

Section 12 "Resource: ResourceList" does include a definition of a Resource and the associated
Property Data. However, examples in this section may also include fictitious or hypothetical
content to explain implementation concepts.

Refer to other AMEI/MMA specifications for defined Resources and Property Data.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 12 Dec. 8, 2020

2. Example Minimal Implementation

This section shows an example of implementing MIDI-CI Property Exchange in a very simple
device. In this case the device is an effect pedal that can be controlled by MIDI. Software on the
computer acts as the MIDI-CI Initiator and the effect pedal is the Responder.

Note: This is a hypothetical example to give a simplified overview of an implementation. The data
as presented in this example should not be considered to be definitive for any Device.

The effect pedal supports inquiries for 4 Resources:
• ResourceList
• DeviceInfo
• ChannelList
• CMList

The effect pedal has a simple parser to recognize only these 4 inquiries. When it recognizes an
inquiry, it replies with a preformed SysEx message fixed in ROM. The SysEx messages include
the Property Data as described in the following tables:

Action 1:
Perform a MIDI-CI Discovery Transaction, exchanging fundamental information between the
software and the effect pedal (See MIDI-CI [MMA03] for details).

Action 2:
The software sends an Inquiry: Property Exchange Capabilities message to request details of
Property Exchange Support from the effect pedal. The effect pedal returns a Reply to Property
Exchange Capabilities message.

Action 3:
Initiator Sends Inquiry: Get Property Data Message

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 13 Dec. 8, 2020

Header Data {"resource":"ResourceList"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data [
 {"resource": "DeviceInfo"},
 {"resource": "ChannelList"},
 {"resource": "CMList"}
]

Initiator now knows which Resources the Responder supports and can make those inquiries.

Action 4:
Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"DeviceInfo"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "manufacturerId": [125,0,0],
 "manufacturer": "Educational Use",
 "familyId": [0,0],
 "family": "Example Range",
 "modelId": [48,0],
 "model": "Example Pedal",
 "versionId": [0,0,1,0],
 "version": "1.0"
}

Action 5:
Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"ChannelList"}

Property Data none

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 14 Dec. 8, 2020

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data [
 {
 "title": "Simple Pedal",
 "channel": 1,
 "links": [
 {"resource": "CMList", "resId": "all"}
]
 }
]

Action 6:
Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"CMList","resId":"all"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data [
 {
 "name": "Level",
 "priority": 1,
 "controlType": "cc",
 "controlIdx": [75],
 "default": 100
 },
 {
 "name": "Tone",
 "priority": 1,
 "controlType": "cc",
 "controlIdx": [76],
 "default": 64
 },
 {
 "name": "Distortion",
 "priority": 1,
 "controlType": "cc",
 "controlIdx": [77],
 "default": 64
 }
]

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 15 Dec. 8, 2020

3. Property Exchange: MIDI-CI SysEx Messages
3.1 Property Exchange Inquiries and Replies
MIDI-CI defines several different types of Inquiry messages differentiated by the Universal
System Exclusive Sub Id #2.

3.1.1 Inquiry: Get Property Data
The Inquiry: Get Property Data message is used to retrieve properties from the device.

3.1.2 Inquiry: Set Property Data
The Inquiry: Set Property Data message is used for the setting of information in a Resource.

3.1.3 All MIDI-CI Messages used for Property Exchange
Sub ID #2 Message Type

MIDI-CI Property Exchange Messages
0x30 Inquiry: Property Exchange Capabilities
0x31 Reply to Property Exchange Capabilities
0x32 Inquiry: Has Property Data (Reserved)
0x33 Reply to Has Property Data (Reserved)
0x34 Inquiry: Get Property Data
0x35 Reply to Get Property Data
0x36 Inquiry: Set Property Data
0x37 Reply to Set Property Data
0x38 Subscription
0x39 Reply to Subscription
0x3A Reserved
0x3B Reserved
0x3C Reserved
0x3D Reserved
0x3E Reserved
0x3F Notify Message
MIDI-CI Management Messages
0x70 Discovery
0x71 Reply to Discovery
0x72 Invalidate MUID
0x7F NAK

Note: See MIDI-CI specification for a list of all MIDI-CI messages

3.2 Messages in Multiple Chunks
A Device may choose to send the Data Set of a Property Exchange as a single SysEx message or
as a set of multiple SysEx messages known as “Chunks”.
When a complete Property Exchange SysEx message, with its payload Resource Data, exceeds
the size of the “Receivable Maximum SysEx Message Size” of the other Device (discovered in
the initial Discovery Transaction between the devices) the sender shall break the message into
multiple Chunks. A Device may also choose to send a message in multiple Chunks for its own
design requirements.
If the Device chooses to send a Data Set in multiple Chunks, it specifies the “Number of Chunks
in Data Set” and labels each Chunk with a sequential “Number of This Chunk”.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 16 Dec. 8, 2020

Any message that contains Header Data only and does not contain any Property Data may not
use the Chunking mechanism.
See the MIDI-CI specification [MMA03] for more details including values for special cases.

3.3 Request ID
The Request ID is a number from 0 to 127 and has 3 functions:

1. The Request ID is used to associate multiple Chunks of a single PE message. Every
Chunk of a message shall contain the same Request ID.

2. The Request ID is used to associate a reply to the inquiry that prompted a response. The
reply to an inquiry message shall contain the Request ID that was sent in the inquiry.

3. The Request ID also allows the Device to support multiple messages being sent and
received at one time. This can be useful to prevent a larger PE message which is split
over many chunks from blocking smaller requests. For example, it may take some time
for a Responder to gather and transfer a complete Data Set in response to an inquiry. In
this case, an Initiator might want to make a 2nd inquiry before the response to the 1st
inquiry has been completed.

Using the Inquiry Property Exchange Capabilities mechanism, each Device reports the
Number of Simultaneous Property Exchange Requests Supported. An Initiator or Responder
shall not use more than the reported number of requests supported by the other device.

Some devices may have a Number of Simultaneous Property Exchange Requests Supported
which declares a total limit shared among all connected Initiators. An Initiator needs to deal with
the possibility that the number of Number of Simultaneous Property Exchange Requests
Supported may be exhausted due to other requests from other Initiators. A Responder may reply
with a "Too many requests" error (see Section 5.4.1) and the request will need to be retried.

If an Initiator has exhausted the Number of Simultaneous Property Exchange Requests
Supported, it should not issue any new request until a previous Transaction has completed.

Request IDs may be reused after a Transaction is complete.

Request ID values are unique only to the connection between a specific Initiator and specific
Responder, determined by the MUID of those 2 devices. The same Request ID value may be
active on a connection between a different pair of MUIDs without incurring a collision.

Requests that don't receive a response will time out and the Request ID can be reused. See
Section 10.3 for more details about timeouts.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 17 Dec. 8, 2020

Diagram: Example Using Request ID for Several Inquiries:

See MIDI-CI [MMA03] for more details.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 18 Dec. 8, 2020

4. Property Data Formats
Property Exchange SysEx messages have separate Header Data and Property Data fields.
By default, Property Data shall be JSON data.
However, if a Header Data field includes a "mediaType" Property, the associated Property Data
may be non-JSON (see Section 4.2).
By default, the Property Data field is uncompressed. See Section 4.3 for details of optional
compression and or encoding of the Property Data field.

4.1 General Rules for JSON Data in the Property Data Field
• Property names shall use camelCase ASCII strings (“a-z”, “A-Z”, “0-9” only).
• Property Names shall not be just numbers e.g. "0" or "120".
• Property Names should be kept short while still being meaningful.
• All Numbers are in Decimal (Base 10). The JSON standard does not support hexadecimal

number values such as 0x7F, as commonly used in MIDI documentation. These shall be
converted to numbers (integers). e.g. Hex number 0x42 (or 42H) shall be converted to 66.

4.1.1 7-Bit Encoding of JSON String Values
Due to the restrictions of MIDI 1.0 SysEx, JSON string values have the following rules:

1. 7-bit ASCII characters are supported, except that the "\" character has a special function
as defined in the JSON standard, ECMA404 [EXT01].

For clarity in Property Exchange, as ECMA404 may be unclear about this, the
forward slash character "/" can be optionally escaped so it can be encoded in
Property Exchange JSON as either "/" or "\/".

2. All characters which are not 7-bit ASCII characters shall be converted to UTF-16, and
then escaped using "\u" as defined in the JSON standard, ECMA404 [EXT01].

Unicode Characters Examples:

1. Beats♪ is converted to Beats\u266a.
2. ノーミュージック、ノーライフ is converted to

\u30ce\u30fc\u30df\u30e5\u30fc\u30b8\u30c3\u30af\u3001\u30ce\u30fc\u30e9\u30a4\u3
0d5

3. 音楽がなければ人生じゃない。is converted to
\u97f3\u697d\u304c\u306a\u3051\u308c\u3070\u4eba\u751f\u3058\u3083\u306a\u3044\
u3002

4.1.2 Example of Unicode Escape Sequence in a String Value
This example cannot be sent over SysEx:
 {
 "title": "ピアノと弦",
 "channel": 1,
 "bankPC": [0,0,76],
 "description": "This text contains double quote \" and new line \n characters."
 }
The non-ASCII characters, ピアノと弦, shall be escaped before sending.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 19 Dec. 8, 2020

An example after encoding the non-7-bit characters, allowing for transmission over SysEx:
 {
 "title": "\u30d4\u30a2\u30ce\u3068\u5f26",
 "channel": 1,
 "bankPC": [0,0,76],
 "description": "This text contains double quote \" and new line \n characters."
 }

4.1.3 CommonMark
CommonMark [EXT04], a strongly defined, highly compatible specification of Markdown, is a
method for using plain text to display structured formatted text. It allows for simple screen
devices to display the raw text while more complex devices can render the text in a formatted
way. Some string fields, such as "description" in the "ModeList" Resource, will refer to
supporting CommonMark.

4.1.4 Manufacturer-specific Properties
Manufacturers may wish to include their own specific information inside MMA/AMEI defined
Resources (see Section 6).
This shall be accomplished by including a manufacturer-specific Property with a name prefixed
with "x-". Manufacturer-specific properties shall conform to all other format rules defined by
Property Exchange specifications.

Note: Manufacturer-specific properties that are contained within a Manufacturer/Device-
Specific Resource do not need to be prefixed with "x-" (See Section 6.4).

Example of Property Data for a DeviceInfo Resource Inquiry including a Manufacturer
Specific Property:
{
 "manufacturerId":[125,0,0],
 "manufacturer":"Educational Use",
 "familyId":[0,0],
 "family":"Example Range",
 "modelId":[48,0],
 "model":"Example Pedal",
 "versionId":[0,0,1,0],
 "version":"1.0",
 "x-uniqueKey":"myuniquevalue"
}

4.2 Non-JSON Data
Property Exchange allows devices to exchange Property Data that is not JSON compliant. If the
Property Data is not JSON as defined in Section 4.1, the associated Header Field shall include a
"mediaType" Property to declare the format of the Property Data (see Section 5.5).

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 20 Dec. 8, 2020

Non-JSON Property Data shall be encoded to fit in the 7-bit data format of System Exclusive
messages. Non-JSON Property Data may also be compressed. See Section 4.3 for details of
Compression and Encoding.

4.3 Compression and Encoding Property Data
Property Data may be JSON data (by default) or may be another data type (with a "mediaType"
declared, see Section 5.5). Regardless of data type, the Property Data field may optionally use
compression and/or encoding if both devices support that compression and/or encoding. The
compression and/or encoding types supported by a device shall be discovered using the
ResourceList inquiry (See Section 7.1).
When the Property Data field contains a compressed and/or encoded payload, the Header Data
field shall declare the compression and/or encoding type.

The following table lists the supported compression and encoding formats in this version of
Property Exchange. The Property Value is the enum value used in Header fields (See Section 5)
and in ResourceList (See Section 7.1) to declare encoding types.

Property Value Description

ASCII Uncompressed, unencoded (must be 7-bit data)

Mcoded7 Encoded using Mcoded7 (See Section 4.3.1)

zlib+Mcoded7 Compressed using zlib (RFC 1950 [EXT07]) with Mcoded7 encoding.

4.3.1 Mcoded7: 8-Bit to 7-Bit encoding
The default format of the Property Data field in Property Exchange message is JSON data in
ASCII text as defined in Section 4.1.1. Property Data which is not ASCII text as defined in
Section 4.1.1 shall use the Mcoded7 format to encode 8-bit data to 7-bit.
Mcoded7 is also used in the File Dump format (without the name “Mcoded7”).

Description from the File Dump format from the MIDI 1.0 Specification [MMA01]:
Each group of seven stored bytes is transmitted as eight bytes. First, the sign bits of the seven
bytes are sent, followed by the low-order 7 bits of each byte. (The reasoning is that this would
make the auxiliary bytes appear in every 8th byte without exception, which would therefore be
slightly easier for the receiver to decode.)
The seven bytes:

AAAAaaaa BBBBbbbb CCCCcccc DDDDdddd EEEEeeee FFFFffff GGGGgggg
are sent as:

0ABCDEFG
0AAAaaaa 0BBBbbbb 0CCCcccc 0DDDdddd 0EEEeeee 0FFFffff 0GGGgggg

From a buffer to be encoded, complete groups of seven bytes are encoded into groups of eight
bytes. If the buffer size is not a multiple of seven, there will be some number of bytes leftover
after the groups of seven are encoded. This short group is transmitted similarly, with the sign bits
occupying the most significant bits of the first transmitted byte. For example:

AAAAaaaa BBBBbbbb CCCCcccc
are transmitted as:

0ABC0000 0AAAaaaa 0BBBbbbb 0CCCcccc

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 21 Dec. 8, 2020

4.4 Order of Processing for Compression and/or Encoding

4.4.1 Uncompressed and Unencoded JSON Property Data
When the Property Data is uncompressed and not encoded in Mcoded7, it shall be formatted
using the following steps:

1. Create the JSON object (as a string)
2. Escape all multi-byte and non-ASCII characters as defined in Section 4.1.1.
3. Break the output into individual chunks based on Receivable Maximum SysEx Message

Size (See MIDI-CI specification on how to retrieve this value from the Discovery
Transaction.)

4. Send each chunk via MIDI-CI Property Exchange message(s).

4.4.2 Compressed and Encoded JSON Property Data
When the Property Data is zlib compressed and encoded in Mcoded7 (Mcoded7 is mandatory for
zlib compressed data), it shall be formatted using the following steps:

1. Create the JSON object (as a string)
2. Escape all multi-byte and non-ASCII characters as defined in Section 4.1.1.
3. Compress using zlib
4. Encode use Mcoded7
5. Break the output into individual chunks based on Receivable Maximum SysEx Message

Size (See MIDI-CI specification on how to retrieve this value from the Discovery
Transaction.)

6. Send each chunk via MIDI-CI Property Exchange message(s).

4.4.3 Encoded Non-JSON Property Data
When Property Data is encoded it shall be formatted using the following steps:
1. Create the Property Data
2. Encode using Mcoded7
3. Break the output into individual chunks based on Receivable Maximum SysEx Message

Size (See MIDI-CI specification on how to retrieve this value from the Discovery
Transaction.)

4. Send each chunk via a MIDI-CI Property Exchange message.

4.4.4 Compressed and Encoded Non-JSON Property Data
When the Property Data is zlib compressed and encoded in Mcoded7 (Mcoded7 is mandatory for
zlib compressed data), it shall be formatted using the following steps:

1. Create the Property Data
2. Compress using zlib
3. Encode use Mcoded7
4. Break the output into individual chunks based on Receivable Maximum SysEx Message

Size (See MIDI-CI specification on how to retrieve this value from the Discovery
Transaction.)

5. Send each chunk via MIDI-CI Property Exchange message(s).

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 22 Dec. 8, 2020

5. Header Data
5.1 Header Format Restrictions
The Header Data field shall contain properties in JSON format. Header Data shall conform to the
rules defined for Property Data in Section 4.1 and shall also conform to the additional set of rules
and restrictions in Section 5.1.1.

Note: Header Data shall be JSON data even if the associated Property Data is not JSON data.

5.1.1 JSON Header Data Property Additional Rules
Restrictions on the Header Data make it more easily readable by devices with limited memory
and processing power.

• Properties shall be of type number, boolean, or string
• Described string Properties shall define a max length
• Property Key names shall use camelCase ASCII strings no longer than 20 chars.
• For requests, the first Property shall be the Resource. For replies, the first Property shall

be status. For subscription messages, the first Property shall be the command. In most
cases no other data is needed.

• The Header Data shall not include any whitespace characters such as space, tab, line feed,
or newline. Header Data shall be all on one line.

Note: these limitations only apply to JSON used in the Header Data (and not to JSON data in
the Property Data field).

5.2 Common Header Properties in a Request

Property Key Property Value Type Description

resource string (required, max
36 chars ASCII
Alphanumeric
characters only)

This is the targeted Resource.

resId string (max 36 chars,
ASCII Alphanumeric
or "_" characters only)

Resource ID, the identifier used to select the desired
Payload Data entry. See Section 6.5.

mutualEncoding enum

This is used to indicate the format of the Property
Data in this MIDI-CI Transaction.
In the case of an Inquiry: Get Property Data
message, this is the requested encoding of the
Property Data in the expected response, a Reply to
Get Property Data message from the Responder.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 23 Dec. 8, 2020

In the case of an Inquiry: Set Property Data
message, this is the encoding of the Property Data
in that Inquiry: Set Property Data message.
The value shall be one of the standard types
defined in Section 4.3). The encodings supported
by the Responder for each Resource are
discovered by the use of ResourceList (See
Section 12).

5.3 Common Header Properties in a Reply

Property Key Property Value Type Description

status number (required,
integer)

This is the Status of the response. This is similar to
HTTP Status codes.
• Shall use the status list as described in Section

5.4.1

message string (max 512 bytes
after escaping)

This is an optional explanatory text for the user to
provide a hint to why an error status was received.

mutualEncoding enum

This is used in a Reply to Get Property Data message
to indicate the format of the Payload Data. The value
shall be one of the standard types defined in Section
4.3). This shall match the mutualEncoding Header
Property in the Inquiry: Get Property Data message.

cacheTime number (integer) (>=0) This is the number of seconds that this document
should be cached. The Initiator should use this cached
result for subsequent requests for the same Resource
Data.

5.4 Reporting Status and Errors: Reply Header
Each MIDI-CI Property Exchange reply message shall include a status Property in the Header
Data field. If the status is any value other than 200, an associated message should be included.

The associated message is optional but recommended. If you include the message, you
should use it to specify why the status code was triggered, not what the status code
means.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 24 Dec. 8, 2020

The message Header Data may be used to declare a successful Transaction. If a Responder
successfully receives and responds to an Inquiry: Set Property Data message, the Responder shall
confirm with a value of 200 in the "status" Property.
Example:
{"status":200}

The message Header Data may be used to report an error code with an associated message.
Example:
{"status":400,"message":"Inquiry Header does not specify the Resource."}

5.4.1 Table of status codes used in a Reply message
The following is a list of Property Exchange status codes. Reply messages shall only use the
Status codes that are listed in this table and shall not use any other codes.
Note: The Notify message uses other status codes. See Section 10 for details.

200-299 Success Messages – Do Not Retry

200 Success/Ok
202 Accepted – Message is accepted but device doesn’t have the time or processing power to

guarantee the results.
300-399 Redirection Messages – These Should Retry

341 Resource Currently Unavailable or an Error Occurred.
342 Bad Data/Unexpected End of Data Set – Example: might be caused by SysEx data

corruption or some other data stream issue.
343 Too Many Requests – Device is unable to support this additional request at this time.
400-499 Client Error Responses – These are Fails – Do Not Retry

400 Bad Request – Data was received but it isn’t correct
403 Request received but Reply not available based on Authorization. Example: contains

protected or copyrighted data.
404 Resource Not Supported/Found
405 Resource Not Allowed – Resource is not applicable at this time. Example: Device may be

in the wrong Mode.
413 Payload Too Large
415 Unsupported Media Type or Encoding
445 Invalid Version of Data – Data is assumed valid, but the version of the data format is

 a version that the receiver cannot support. Example: the data might be intended
 for a newer version of software than the receiver, running a prior version of software, is
able to use.

500-599 Server Error Responses – These are Major Errors
500 Internal Device Error – A significant failure has occurred on the device.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 25 Dec. 8, 2020

5.4.2 Other Error Mechanisms
In addition to the errors defined above for use in a Reply message, Property Exchange provides
mechanisms to Terminate an Inquiry, perform a Timeout Wait, or report a Timeout condition by
way of a Notify message. For details see Section 10.

MIDI-CI also provides a NAK message that may be used with Property Exchange when it is not
possible to return a more informative error report as defined above. See the MIDI-CI
specification for details.

5.5 Extra Header Property for Using Property Data which is
Not JSON Data
If the associated Property Data is not JSON data which conforms to rules in Section 4.1, the
Header Field shall include a "mediaType" Property to declare the format of the Property Data.

Property Key Property Value Type Description

mediaType string (max 75 chars) Media Type of the Property Data that is the payload of
this Property Exchange message in the format(s) as
defined by RFC 6838 [EXT05]. Common types can be
found in Media Types [EXT06]. This is sometimes
referred to as MIME type.

5.6 Header Properties to be Defined in the Future
Some Resources in the future may require new or unique Header Properties. All such Header
Properties shall comply with the rules in this Section 5.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 26 Dec. 8, 2020

6. Resources
A Resource is what determines how a request and response is structured. It tells the device how
to act and what to do.

Resource Format Rules:

• Resource names shall be nouns like DeviceInfo, Tempo, Mode
• Resource names shall not contain spaces and shall use Pascal Case (sometimes called

“UpperCamelCase”)
e.g. Channel list is "ChannelList" and tempo is "Tempo".

6.1 Resources Data Formats

By default, Resources shall be JSON compliant with the format rules and restrictions defined in
Sections 4 and 5.

Resources may also contain other data which is not compliant with JSON only if the Resource
declares a non-JSON data type in the "mediaType" Property of the Header Field (see Sections
4.2 and 5.5).

6.2 Using Resources and Property Data

An Initiator sends an inquiry message with the Resource it wishes to retrieve declared in the
Header Data field. The Responder returns a reply message with the corresponding Property Data
in the Property Data field.

Example using the DeviceInfo Resource:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"DeviceInfo"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "manufacturerId":[125,0,0],
 "manufacturer":"Educational Use",
 "familyId":[0,0],
 "family":"Example Range",
 "modelId":[48,0],
 "model":"Example Pedal",
 "versionId":[0,0,1,0],
 "version":"1.0"
}

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 27 Dec. 8, 2020

6.3 MMA/AMEI Defined Resources
Resources defined by the MMA/AMEI shall describe the Properties that can be retrieved, the
intent of the Properties, implementation rules or guidelines, and how they relate with other
Resources.
Resource specifications shall define which Properties are required and which Properties are
optional. Properties which are required, including strings marked as required, shall not be left
empty.
MMA/AMEI Resources should provide a unified approach to common applications. Following
are some of the currently defined Resources:

• Device Information
• Channels in use
• Modes Available
• Programs available
• Controllers available

For descriptions of these, see Section 7.
Other standard Resources will be defined in future specifications by AMEI/MMA.

6.4 Custom, Manufacturer/Device-Specific Resources
Manufacturers may design devices that use custom Resources. The data format of custom
Resources shall conform to the standard style guides defined by Property Exchange.

All manufacturer/device-specific Resource names shall be prefixed with "X-". This is to avoid
any overlap with future defined Resources.
For Example:
X-MyCustomResource

Note: Inside a Manufacturer/Device-Specific Resource (such as X-MyCustomResource),
individual properties do not need to be prefixed with "x-" (See Section 4.1.3).

6.5 Resource ID
Resources may be defined to require a Resource ID ("resId") Property.

A Resource may have a selection of various entries, any one of which could be returned as the
associated Property Data for that specific Resource. Such Resources shall have a "resId"
Property with a unique Property Value assigned to each entry. Any inquiry for that Resource
shall include a "resId" Property to select the desired entry.

If a Resource is defined to use the "resId" Property, then the Resource shall have the
requireResId property set to true in the ResourceList. See Section 12.

6.6 List Resources: Retrieving an Array of Objects
A List Resource is a specific type of Resource that provides a list of objects in a JSON array.
Typical List Resources include ProgramList and ChannelList.

The names of List Resources shall have the suffix “List”, e.g. "ProgramList"

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 28 Dec. 8, 2020

6.6.1 Property Data in a Reply to a List Resource Inquiry

• A Reply to a List Resource shall be an array of objects
• Objects should only be one level deep. Objects, other than the "link" Property described

below, may contain arrays or collections of integral values or strings and shall not contain
other objects.

• List Resources can be complemented with additional Resources to access further, more
detailed information that is not provided in the list. Objects in the reply to a List
Resources may use a "link" Property to declare each Resource that is available for
accessing more detailed information about a listed object. See Section 11.

6.6.2 Pagination
Pagination allows the Initiator to get a subset of the total list of objects available. Pagination uses
the offset and limit mechanism commonly used in JSON applications. Pagination support for
each Resource shall be declared using the "canPaginate":true Property in the ResourceList. See
Section 12.2.1.

The "offset" and "limit" Properties may be used in the Header Data of an Inquiry: Get Property
Data that requests a List Resource. If pagination is used, both Properties shall be in the Header
data of the inquiry:

Property Key Property Value

Type
Description

offset number
(integer, >=0
only)

This is the (0-based) start position in the array of objects in
the List Resource.

limit number
(integer, >=1
only)

This specifies the maximum number of objects to be returned.

All Responder replies to an Inquiry: Get Property Data message with a List Resource, when the
Resource has declared "canPaginate" in the ResourceList, shall contain a "totalCount" Property:

Property Key Property Value

Type
Description

totalCount number
(integer,
required)

This is the number of total objects available, regardless of
pagination.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 29 Dec. 8, 2020

The first Inquiry: Get Property Data message should request a list of entries starting from an
offset of 0. The Initiator may determine how to access the list of entries using pagination based
on the "totalCount" Property from the Responder and the "limit" Property chosen by the Initiator.

Example of a List Resource Request and Response with Pagination

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"ExampleList","offset":10,"limit":5}

Property
Data

none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200,"totalCount":128}

Property Data [
 {
 "title":"Result 11",
 link:[{"resource":"X-Detail","resId":"detail11"}]
 },
 {
 "title":"Result 12",
 link:[{"resource":"X-Detail","resId":"detail12"}]
 },
 {
 "title":"Result 13",
 link:[{"resource":"X-Detail","resId":"detail13"}]
 },
 {
 "title":"Result 14",
 link:[{"resource":"X-Detail","resId":"detail14"}]
 },
 {
 "title":"Result 15",
 link:[{"resource":"X-Detail","resId":"detail15"}]
 }
]

If “offset” and “limit” properties are not used, the Property Data shall contain the whole list of all
objects.

6.7 Simple Property Resources
Simple Property Resources are defined to have Property Data which contains only a single
string, number, or boolean.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 30 Dec. 8, 2020

Example using the LocalOn Resource:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"LocalOn"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data true

Example using the CurrentMode Resource:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"CurrentMode"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data "performance"

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 31 Dec. 8, 2020

7. Resources and Resource Data in a Device
Property Exchange specifications that are written to comply with this Common Rules for
Property Exchange specification define common Resource Data for MIDI Devices. They also
define the relationship between some of the Resource Data (or the relationship between
Resources that access Resource Data). These Resource Data are flexible enough to describe
everything from keyboards, drums, samplers through to robotics and lighting.

7.1 ResourceList – Used Before Other PE Inquiries
An Initiator requests the ResourceList Resource in an Inquiry: Get Property Data message to
retrieve a list of all Resources that the Responder supports. This inquiry should be made before
initiating any other Property Exchange inquiries.

All Devices that support Property Exchange shall respond correctly to a ResourceList inquiry to
report Resources the Device supports.

ResourceList shall not be included in the response to a ResourceList inquiry.

For the full definition of ResourceList, see Section 12.

7.2 Foundational Resources Defined in other Specifications:
It is strongly recommended that all Devices should support the following Foundational
Resources, defined in the "MIDI-CI Property Exchange Foundational Resources: DeviceInfo,
ChannelList, JSONSchema" specification [MMA04]. These Resources provide details about a
device that will aid in auto configuration and provide useful background data to help optimize
many other Property Exchange inquiries. Some PE inquiries have dependencies that require the
prior use of these Resources.

• Device Information (DeviceInfo Resource) - This Resource Data provides
fundamental information about a device. This contains data similar to the Device
Inquiry Universal SysEx message. However, it also includes human-readable values
for Manufacturer, Family, Model and Version information.

• Channels (ChannelList Resource) – The ChannelList Resource describes the current
channels the device is transmitting and receiving across the whole Device. It
describes for each Channel the Port of each Channel, and MPE status. It also
describes for each receive Channel the current program and the ProgramList
Resources available. In Devices that have more than one Mode, the current available
channels can be significantly different in each Mode.

7.3 Other Resources Defined in other Specifications:
Other Resources are defined in other specifications published by AMEI/MMA.

Some examples include:

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 32 Dec. 8, 2020

• Modes – A device may have a Performance mode, a Single Patch Mode, a GM
mode or some other Mode. Each mode is generally structured differently in terms of
the MIDI channels and Programs available.

• Programs – Program names and categories, with Bank MSB/LSB and Program
Change messages for recalling each Program.

• Supported Controller Messages – Discover the CC/NRPN/RPN and other
Controller messages that the Device sends or receives on a Channel.

• Get and Set Device State – A snapshot of the device to restore at a later time.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 33 Dec. 8, 2020

8. Full and Partial SET Inquiries
Property Exchange offers two methods for updating Resource Data or subsets of Resource Data:

Method 1, Full SET: To update a whole set of Resource Data, an Initiator shall send an
Inquiry: Set Property Data message. The Property Data field shall contain the whole
Resource Data which would be sent by a Responder in a Reply to Get Property Data
message. This may be used only if the target Resource declares a Property Value of
"partial" or "full" for the "canSet" Property in the ResourceList (see Section 12).

Method 2, Partial SET: For incremental changes or to change a subset of the Resource
Data, an Initiator shall send an Inquiry: Set Property Data message. The Header Data
field shall include "setPartial":true. In the Property Data field, each key of the update
Resource Data shall represent a JSON Pointer (as per RFC 6901) to the Resource Data
and provides a value. This value shall be a string, number, or boolean. This value shall
not be an object or array. This may be used only if the target Resource declares a
Property Value of "partial" for the "canSet" Property in the ResourceList (see Section
12).

8.1 Full SET Example:

A hypothetical Manufacturer defined Resource called "X-ProgramEdit" retrieves the following
Resource Data using an Inquiry: Get Property Data message:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "name": "PIANO 4",
 "lfoSpeed": 30,
 "lfoWaveform": "triangle",
 "pitchEnvelope": {
 "rates": [94,67,95,60],
 "levels": [50,50,50,50]
 }
}

The Initiator decides to upload a whole new program. The Initiator uses an Inquiry: Set Property
Data message:

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 34 Dec. 8, 2020

Initiator Sends Inquiry: Set Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data {
 "name": "Violin 2",
 "lfoSpeed": 10,
 "lfoWaveform": "sine",
 "pitchEnvelope": {
 "rates": [30,20,90,47],
 "levels": [100,90,80,70]
 }
}

Responder Sends Reply to Set Property Data Message

Header Data {"status":200}

Property Data none

8.2 Partial SET Examples:

A hypothetical Manufacturer defined Resource called "X-ProgramEdit" retrieves the following
Resource Data using an Inquiry: Get Property Data message:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "name": "PIANO 4",
 "lfoSpeed": 30,
 "lfoWaveform": "triangle",
 "pitchEnvelope": {
 "rates": [94,67,95,60],
 "levels": [50,50,50,50]
 }
}

The Initiator makes a minor change to the LFO speed and only wants to send this change.
The Initiator uses an Inquiry: Set Property Data message:

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 35 Dec. 8, 2020

Initiator Sends Inquiry: Set Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd","setPartial":true}

Property Data {
 "/lfoSpeed":10
}

Note the addition of the "setPartial":true Property.

Responder Sends Reply to Set Property Data Message

Header Data {"status":200}

Property Data none

A Partial SET may send more than one change. This is an example that updates 2 array values:

Initiator Sends Inquiry: Set Property Data Message

Header
Data

{"resource":"X-ProgramEdit","resId":"abcd","setPartial":true}

Property
Data

{
 "/pitchEnvelope/rates/0":80,
 "/pitchEnvelope/levels/0":60
}

Responder Sends Reply to Set Property Data Message

Header Data {"status":200}

Property Data none

When these 2 updates are applied, getting the Property Data will now look like:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 36 Dec. 8, 2020

Property Data {
 "name": "PIANO 4",
 "lfoSpeed": 10,
 "lfoWaveform": "triangle",
 "pitchEnvelope": {
 "rates": [80,67,95,60],
 "levels": [60,50,50,50]
 }
}

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 37 Dec. 8, 2020

9. Subscribing to Property Data
A Subscription mechanism in PE may be used when an Initiator wants to keep Property Data of a
Responder's Resource synchronized between the Initiator and Responder. A subscription is only
possible if it is supported by both Initiator and Responder.

If a Responder declares that a subscription is available, the Initiator may subscribe to the
Resource while it needs ongoing, active access to the Property Data.

1. The Responder shall report in its reply to ResourceList that a Resource is subscribable.
See Section 12.

2. The Initiator may subscribe to subscribable Resource on the Responder using the
Subscription message with a "start" command.

Subscriptions enable two-way communication of one set of Property Data:

Responder: If any Property in the subscribed Property Data changes in the Responder,
then the Responder shall inform the Initiator using a Subscription message with a
"partial", "full", or "notify" command (See Section 9.1).

Examples:
• If a MIDI Control Change message changes a Property Value in the

Responder, the Responder sends the updated Property to the Initiator.
• If a user sets a device parameter that changes a Property Value in the

Responder, the Responder sends the updated Property to the Initiator.
• If an Inquiry: Set Property Data message changes a Property Value in the

Responder, the Responder sends the updated Property to the Initiator.

Initiator: If any Property in the subscribed Resource Data changes in the Initiator, the
Initiator shall take one of two optional actions to update the Property in the Responder:

1. If the Initiator is able to send a MIDI message (such as a MIDI Control Change)
to set the Property on the Responder, then it shall send the MIDI message.

2. If the Initiator is not able to send a MIDI message to set the Property on the
Responder, it shall send an Inquiry: Set Property Data.

Example:

• A visual program editor is open in a DAW. Editing data on the device will
update the DAW to reflect those changes without the user having to
manually refresh the data. This also works in reverse where the DAW can
send very specific changes back to the device.

Each subscription update from the Responder shall be sent using a Subscription message.

Each reply to a Subscription message shall be sent using a Reply to Subscription message.

Note: If a subscribed Resource has linked Resources (see Section 11), in some cases the Initiator
may subscribe to the linked Resources in order to get additional, related updates.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 38 Dec. 8, 2020

Note: There may be a delay between the Initiator sending the Inquiry: Set Property Data
message and receiving a corresponding Subscription update reflecting the change from the
Responder. When displaying the state of a Property to a user, a device should not display the
duplication of data.

9.1 Extra Request Header Properties for Subscriptions

Property
Key

Property Value
Type

Description

subscribeId string
(required, max
8 chars, "a-z",
"0-9" or "_"
characters
only)

An initiator may decide to subscribe to several different
Resource Data at any one time. To identify which messages are
related to each Subscription a Subscription Id shall be assigned
by the Responder when starting a Subscription.
This Subscription Id shall be used by the Responder for all
update messages related to that Subscription and shall also be
used by either the Initiator or the Responder to end the
subscription. Once a Subscription is ended, the Subscription Id
can be reused for a new Subscription.

command enum
(required)

The command determines the intent of the Subscription MIDI-CI
message

Start Subscription ("start") - Initiator only
This shall create a new Subscription. The header is identical to
that used by an Inquiry: Get Property Data message. The
Response does not return any Property Data.

Partial Property Data Update ("partial") - Responder only
The Responder may use this to send an update whenever it
makes changes to a subset of the subscribed Property Data. The
Property Data for the update shall use the same format as data in
a Partial Inquiry: Set Property Data message.

Full Property Data Update ("full") - Responder only
The Responder shall use this to send a complete set of the
subscribed Property Data using the same format as in a Reply to
Get Property.

Notify Command: Get Property Data ("notify") - Responder
only
The Responder shall use this to ask the Initiator for a complete
refresh of the subscribed Property Data. There is no body in this
message.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 39 Dec. 8, 2020

The Initiator shall not use this but instead shall perform an
Inquiry: Get Property Data to get the refreshed Property Data
from the Responder.

End Subscription ("end") - Initiator or Responder
Either device can end the Subscription.
There is no Property Data in this message.

9.1.1 Selecting "partial", "full", or "notify"

When an individual Property or small number of Properties of the Property Data changes in the
Responder, the Responder should use a "command":"partial" Property.

When the complete Property Data or a substantial subset of the Property Data changes in the
Responder, the Responder should use a "command":"full" Property. The "command":"full"
Property should be also used for all Simple Property Resources.

Use of "command":"partial" and "command":"full" should be limited to only when the Property
Data fits into a single Property Exchange Message Chunk. If the Property Data spans multiple
message Chunks, then the use of "command":"notify" is recommended.

9.2 Replying to Subscription Messages
A device that receives a Subscription message for any subscribed Resource Data shall reply with
a Reply to Subscription message, so the original sender is aware of the success or failure of a
command. If there is a failure, the sender may decide to retry or end the Subscription by sending
a Subscription Message with the "command" Property set to "end".

If an Initiator receives but cannot handle a “partial” or “full”, the Initiator shall:

1. Return a Reply to Subscription message to report success in receiving the
message.

2. Send an Inquiry: Get Property Data to remain synchronized with subscribed data
of the Responder.

9.3 Setting the Property Data when Sending the "command"
Property with the Property Value "full"
When Property Data is an array or object the Property Data for the update shall use the same
format as data in a Partial Inquiry: Set Property message (See Section 8).

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 40 Dec. 8, 2020

9.3.1 Example: Subscription to a Simple Property Resource

Step 1:

Initiator Sends Subscription Message

Header Data {"command":"start","resource":"CurrentMode"}

Property Data none

Responder Sends Reply to Subscription Message

Header Data {"status":200,"subscribeId":"sub32847623"}

Property Data none

Step 2:

Responder Sends Subscription Message using a "full" command

Header Data {"command":"full","subscribeId":"sub32847623"}

Property Data "multichannel"

Initiator Sends Reply to Subscription Message

Header Data {"status":200}

Property Data none

9.4 Example Set of Transactions with Initiator Subscribing to
Responder Resources
The following shows messages exchanged between the two devices.

This diagram shows the example life cycle of a single Subscription. There may be several
Subscription life-cycles between two devices, each subscription having its own Subscription Id.

A hypothetical Manufacturer defined Resource called "X-ProgramEdit" retrieves the following
Resource Data using an Inquiry: Get Property Data message:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 41 Dec. 8, 2020

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "name": "PIANO 4",
 "lfoSpeed": 10,
 "lfoWaveform": "triangle",
 "pitchEnvelope": {
 "rates": [80,67,95,60],
 "levels": [60,50,50,50]
 }
}

The X-ProgramEdit Resource in the ResourceList has previously declared the Resource to be
subscribable with the "canSubscribe" Property set to true.

The Initiator subscribes by sending a Subscription message:

Initiator Sends Subscription Message

Header Data {"command":"start","resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

Responder Sends Reply to Subscription Message

Header Data {"status":200,"subscribeId":"sub138047"}

Property Data none

The user changes the LFO waveform on the Responder Device to a square. The Responder
Device sends a Subscription message to inform the Initiator of the update:

Responder Sends Subscription Message

Header Data {"command":"partial","subscribeId":"sub138047"}

Property Data {
 "/lfoWaveform":"square"
}

Initiator Sends Reply to Subscription Message

Header Data {"status":200}

Property Data none

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 42 Dec. 8, 2020

The user hits a randomize button on the Responder Device. As there are numerous changes the
Device decides to notify the Initiator to get a complete new set of Resource Data:

Responder Sends Subscription Message

Header Data {"command":"notify","subscribeId":"sub138047"}

Property Data none

Initiator Sends Reply to Subscription Message

Header Data {"status":200}

Property Data none

The Initiator shall refresh its Resource Data using the same Header data it used originally:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "name": "PIANO 4",
 "lfoSpeed": 50,
 "lfoWaveform": "saw",
 "pitchEnvelope": {
 "rates": [25,46,17,0],
 "levels": [80,10,36,94]
 }
}

The user changes the "name" Property from the Initiator. The Initiator uses a Partial Set.

Initiator Sends Inquiry: Set Property Data Message

Header Data {"resource":"X-ProgramEdit","resId":"abcd","setPartial":true}

Property Data {
 "/name":"Broken Piano"
}

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 43 Dec. 8, 2020

Responder Sends Reply to Set Property Data Message

Header Data {"status":200}

Property Data none

The Responder receives a Control Change MIDI message that modifies the LFO Speed and sets
it to the value of 70. The Responder sends out a Subscription Message to the Initiator.

Responder Sends Subscription Message

Header Data {"command":"partial","subscribeId":"sub138047"}

Property Data {
 "/lfoSpeed":70
}

Initiator Sends Reply to Subscription Message

Header Data {"status":200}

Property Data none

The Initiator decides that it no longer needs to keep the Resource Data in sync and decides to end
the Subscription.

Initiator Subscription Message

Header Data {"command":"end","subscribeId":"sub138047"}

Property Data none

Responder Sends Reply to Subscription Message

Header Data {"status":200}

Property Data none

9.5 Subscription End
If an Initiator no longer needs ongoing, active access to the Property Data, it should end the
subscription.

A subscription should be considered active until any of the following events occur:

• The Initiator unsubscribes by sending a Subscription message with the "command"
Property set to "end" to the Responder.

• The Responder ends a subscription by sending a Subscription message with the
"command" Property set to "end" to the Initiator.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 44 Dec. 8, 2020

• An Invalidate MUID message is received with a Target MUID that matches the MUID of
either the Initiator or the Responder, at which point all subscriptions are ended (without
the use of an End Subscription message).

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 45 Dec. 8, 2020

10. Notify Message
Property Exchange provides mechanisms to Terminate an Inquiry, perform a Timeout Wait, or
report a Timeout condition by way of a Notify message.
A Notify message may be sent by the Initiator or the Responder. There is no reply message
associated with any Notify message.
A Notify message shall use the Request Id of the message in progress which it is currently
referring to.

10.1.1 Table of status codes used in a Notify message
Notify messages shall only use the Status codes that are listed in this table and shall not use any
other codes.

100-199 Notification Messages

100 Timeout Wait
144 Terminate Inquiry
400-499 Client Error Responses

408 Timeout Has Occurred

10.2 Notify: Terminate Inquiry
Either device can terminate a currently running request by sending a Notify message with a
"status" Property with a value of 144. All inquiries related to the Request Id used shall cease
immediately.

Initiator or Responder Sends Notify Message

Header Data {"status":144}

Property Data none

10.3 Notify: Timeout Messages
A Responder shall send a Reply to any Inquiry within a 3-seconds timeout period if it expects the
Initiator to process the reply.
MIDI-CI provides a mechanism for Property Exchange messages to be sent in multiple chunks.
If a device sends a message in multiple chunks, the time between consecutive chunks shall be
under 3 seconds.

10.3.1 Notify: Timeout Wait
If a device cannot generate a suitable Reply or next chunk in a message within the timeout
period, it may send a Notify message with a "status" Property with a value of 100 to keep the
current inquiry active.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 46 Dec. 8, 2020

Example 1:
If a Responder receives an Inquiry and is processing that request, and if the Responder
cannot begin the reply before the timeout period, the Responder may send a Notify
message with a "status" Property with a value of 100.

Example 2:
If a Responder has already sent some data and is building the next chunk in a reply, and if
it cannot send the next chunk before the timeout period, the Responder may send a Notify
message with a "status" Property with a value of 100.

Responder Sends Notify Message

Header Data {"status":100}

Property Data none

10.3.2 Notify: Timeout Has Occurred
If a Responder cannot generate a suitable reply or next chunk in a message within the timeout
period, it may send a Notify message with a "status" Property with a value of 408 to cancel the
inquiry.

If an Initiator does not receive an expected Reply, next message chunk, or a Notify: Timeout
Wait message within the timeout period, it may terminate the inquiry by sending a Notify
message with a "status" Property with a value of 408.

Initiator Sends Notify Message

Header Data {"status":408}

Property Data none

Note: MIDI-CI also provides a NAK that may be used with Property Exchange when it is not
possible to use the Notify message and not possible to return a more informative error report as
defined in Section 5.4. See the MIDI-CI specification [MMA03] for details of the NAK.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 47 Dec. 8, 2020

11. Resource Link Properties
Resources that return an object or an array of objects may provide links to other related
Resources. Links can refer to MMA/AMEI defined Resources or manufacturer-specific
Resources.

Link Properties

Property
Key

Property
Value Type

Description

resource string (max 36
characters)(req
uired)

This is the Resource to be linked.

resId string (max 36
characters)

Resource ID, the identifier used to select the desired Payload Data
entry. See Section 6.5.

title string This is the human readable title for this link. Fallback on using the
"title" Property in ResourceList if not supplied.

role string (max 32
characters)

Role declares to the application on how to use the link. Future
specifications shall define any roles for any linked Resources and
whether such roles are optional or required. Such specifications shall
include but are not limited to:

1) MMA/AMEI specifications for defining common roles.
2) Resource specifications which define a specific role for a

specific Resource.
3) Manufacturer specific definitions, where such role shall be

prefixed with "x-".

If the Resource has a resId then it must be used. If the Resource is not defined to have a resId,
then the Resource may be linked using the Resource name only.

The role Property indicates how a Link will be used:

Examples:
• To use additional, related Properties.
• To use an additional component.
• To select an additional component from a list.
• To open a graphic editor.

11.1.1 Example of Using Links With a "resId" Property

Property Data [
 {
 "title":"Ch.1",
 "channel":1,
 "bankPC":[0,0,0],
 "programTitle":"Piano",
 "links":[

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 48 Dec. 8, 2020

 {"resource":"CMList", "resId":"singch1"},
 {"resource":"X-ProgramEdit", "resId":"singch1"}
]
 }
]

In order to use the first link in the data above, the Initiator sends an Inquiry: Get Property Data
message using the associated "resId" Property.

Initiator Sends an Inquiry: Get Property Data Message

Header Data {"resource":"CMList","resId":"singch1"}

Property Data none

11.1.2 Example of Using Links Without a "resId" Property

Property Data {
 "version":"1.0",
 "manufacturerId": [125,0,0],
 "manufacturer": "Educational Use",
 "familyId": [0,0],
 "family": "Test Range",
 "modelId": [48,0],
 "model": "MIDI-CI Test Workbench",
 "versionId": [0,0,1,0]
 "links":[
 {"resource":"Tempo", "title":"BPM"},
 {"resource":"LocalOn", "title":"Local On/Off"}
]
}

In this example two links are available. The Initiator may choose to present this information to
the user.

Educational Use: MIDI-CI Test Workbench

BPM 120↕

Local On/Off 

The Tempo and LocalOn Resources in this example are Simple Property Resources (See Section
6.7) and are shown as editable in line.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 49 Dec. 8, 2020

11.1.3 Example of Using a "role" Property of a Link
This example uses a hypothetical "role" called "simpleAction", which might be defined to bring
up a button for user selection. The title displayed on the button would be "Initialize Program".

Property Data [
 {
 "channel": 1,
 "bankPC": [0,64,1],
 "title": "My Edited Program",
 "links": [
 {
 "resource": "X-Initialize",
 "role": "simpleAction",
 "propData": "channel1",
 "title": "Initialize Program"
 }
]
 }
]

When the user selects the button, the Initiator performs an Inquiry Get Property Data selecting
the linked Resource.

Initiator Sends an Inquiry: Set Property Data Message

Header Data {"resource":"X-Initialize"}

Property Data "channel1"

The Responder performs the Initialize Program function and returns a reply.

Responder Sends Reply to Set Property Data Message

Header Data {"status":200,"message":"Program on Channel 1 has been Initialized"}

Property Data none

The Initiator displays "Program on Channel 1 has been Initialized" to the user.

11.1.4 Subscriptions and Linked Resources
When a subscription to a Resource is established, linked Resources are not automatically
included in the subscription. If the Initiator also needs to subscribe to a linked Resource, an
additional subscription is required.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 50 Dec. 8, 2020

In general, an Initiator does not need to subscribe to a linked Resource until it accesses the link
and begins ongoing, active use of the linked Resource.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 51 Dec. 8, 2020

12. Resource: ResourceList

The "ResourceList" Resource provides a comprehensive method for an Initiator to understand
how to control the Responder using Property Exchange. Response to ResourceList is mandatory
for all devices that support Property Exchange.

When a Responder receives an Inquiry: Get Property Data message with "ResourceList" the
Responder shall send a Reply to Get Property Data message with a list of all Resources it
supports so the Initiator understands its availability and settings. (ResourceList is itself a List
Resource.)

Each Resource listed provides various qualifiers on how that Resource can be used, such as
being able to use Inquiry: SET Property Data or Subscription messages. Resources defined by
AMEI/MMA specifications have defined default settings so that devices can have a shorter
ResourceList. Devices may override individual settings as needed.

ResourceList is usually the first inquired Resource before requesting any other Property
Exchange Resource. The reply to ResourceList shall include all the MMA/AMEI and
Manufacturer defined Resources supported by a device. The ResourceList Property Data
returned shall not include an entry for ResourceList itself in the list of objects.

12.1 Request ResourceList using Inquiry: Get Property Data
An Initiator requests the ResourceList Resource using the MIDI-CI Inquiry: Get Property Data
message.

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"ResourceList"}

Property Data none

12.2 Property Data for ResourceList Returned via a Reply to
Get Property Data Message
When a Responder receives an Inquiry: Get Property Data message with a ResourceList request,
the Responder sends a Reply to Inquiry: Get Property Data message with an array of objects in
the Property Data field. Each object in the array declares a Resource which is supported by the
Responder.

The structure of objects in a reply to a ResourceList request are as follows:

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 52 Dec. 8, 2020

Property Key Property Value
Type

Description

resource string
(required, max 36
chars)

This is the Resource name. Manufacturer custom
Resource names always start with "X-". See Section
6.4.

canGet boolean
(default: true)

Declares whether this Resource is retrievable by an
Inquiry: Get Property Data message. For example, a
firmware upload Resource may set this to false.

canSet enum ("none",
"full", "partial")
(default:none)

Declares the supported use of Inquiry: Set Property
Data message on this Resource. When set to
"partial", "full" is also supported. See Section 8.

canSubscribe boolean
(default: false)

Declares whether subscription can be used on this
Resource. See Section 9.

requireResId boolean
(default:false)

Inquiry shall contain resId Property in the Header
Data. See Section 6.5.

mediaTypes array of
mediaType strings
(default:
[application/json])

Media Types as defined by RFC-6838 [EXT05].
Common types are listed in Media Types [EXT06].
This is used to declare the type of data. For example,
one Resource might allow MIDI files, but another
allows images or audio data only. See Section 4.2.

encodings array of strings
(default:
["ASCII"])

This is the list of encodings the Resource supports.
See Section 4.3 for the list of acceptable values.

schema JSON Schema
Object

Usually only used with Manufacturer Specific
Resources*. Please see Section 12.4 for more
information

*AMEI/MMA Resources have JSON Schemas. However, they do need to be declared in
ResourceList.

12.2.1 Additional Properties for List Resources
Any Resource which is a List Resource declared as an entry in the ResourceList Property Data
shall include the following additional Properties if they are applicable to that List Resource.

Property Key Property Value

Type
Description

canPaginate boolean
(default:false)

If the Resource returns an array of objects, then the
Resource shall declare whether pagination is
supported. See Section 6.6.2.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 53 Dec. 8, 2020

columns array of Column
objects

This is an optional array of data to know which
Properties, and in what order, to display in a table.
See Section 12.5 for more information.

Example Transaction for ResourceList:

Initiator Sends Inquiry: Get Property Data Message

Header Data {"resource":"ResourceList"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data [
 {"resource": "DeviceInfo"},
 {"resource": "ChannelList","canSubscribe":true},
 {"resource": "ProgramList"},
 {"resource": "CMList"},
 {
 "resource": "BufferState",
 "canSet": "full",
 "mediaTypes": ["application/octet-stream"],
 "encodings": ["MCoded7"]
 }
]

12.3 Minimized Listing of AMEI/MMA Defined Resources in
ResourceList using Default Values
Each ResourceList object includes a set of Properties that explain the details about how that
particular Resource may be used on the Device. Many of those Properties define a default value
within the range of allowed Property Values.

If a Device’s implementation uses the default value for a Property, then that Property is not
required to be included in the ResourceList object.

If a Device’s implementation does not use the default value for a Property, then the ResourceList
object shall include the Property and Property Value to declare a value which overrides the
default value.

The default values for "schema", "requireResId", "canPaginate", "canSet", "canGet" Properties
shall not be overridden on AMEI/MMA defined Resources unless the specification for that
Resource specifically defines an allowance for overriding.

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 54 Dec. 8, 2020

12.3.1 Example: ResourceList Object for the ChannelList Resource

This example shows declaring all the default values:

Property Data [
 {
 "resource": "ChannelList",
 "canGet": true,
 "canSet": "none",
 "canSubscribe": false,
 "canPaginate": false,
 "schema":{
 "type": "array",
 "title": "Channel List",
 "$ref": "http://schema.midi.org/property-exchange/M2-105-S_v1-
0_ChannelList.json"
 },
 "columns":[
 {"property": "title", "title": "Title"},
 {"property": "channel", "title": "MIDI Channel"},
 {"property": "programTitle", "title": "Program Title"},
 {"link": "ProgramList", "title": "Program List"}]
 }
]

This example shows a minimized object using all the default values:

Property Data [
 {"resource":"ChannelList"}
]

This example shows a minimized object using the default values for some Properties
and declaring non-default values for other Properties:

Property Data [
 {
 "resource":"ChannelList",
 "canSubscribe":true,
 "columns":[
 {"property":"channel","title":"MIDI Channel"},
 {"property":"title","title":"Title"},
 {"link":"ProgramList","title":"Program List"},
 {"link":"CMList","title":"Channel Controllers"}
]
 }
]

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 55 Dec. 8, 2020

12.4 Schema Property for Manufacturer Specific JSON
Resources
AMEI/MMA standardized Resources do not require exchange of a JSON Schema.

Manufacturer-specific JSON Resources shall supply at least a simple JSON Schema. The JSON
Schema shall supply at least “title" and “type". Including these 2 objects is enough to meet the
minimum requirement. Supplying a fully descriptive JSON Schema is optional.

For devices that want to exchange a more complete JSON Schema, conformance to JSON
Schema draft 4 is recommended. Other revisions of JSON Schema may be declared using the
"$schema" property.

12.4.1 Including a Schema Property in the ResourceList
Any Manufacturer-specific JSON Resources that has a simple structure or is a Simple Property
Resource may include the complete JSON Schema in a "schema" Property.

12.4.1.1 Example Resource List Object with a "schema" Property:

Property Data [
 {

"resource":"X-WIFIOn",
"canSet":"full",
"schema":{

"title":"WIFI Enabled",
"description":"Turn WIFI on or Off",
"type":"boolean"

}
}

]

12.4.2 Providing a Reference to an Expanded JSON Schema in the ResourceList
It is recommended that Manufacturer Specified Resources use a reference to supply a fully
descriptive JSON Schema for complex data. JSON Schema provides "$ref" keyword in the
"schema" Property to support this concept.

From JSON Schema: "The value of $ref is a URI, and the part after # sign (the “fragment” or
“named anchor”) is in a format called JSON Pointer."

To indicate that the JSON Schema comes from the device, the following URI scheme is used:
"midi+jsonschema://<JSON Schema Id>"

12.4.2.1 Example ResourceList Object using a JSON Schema reference:

Property Data [
 {
 "resource":"X-Globset",

https://tools.ietf.org/html/rfc6901

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 56 Dec. 8, 2020

"canSet":"full",
"schema":{
"title":"System Settings",
"description":"Set the global settings here",
"type":"object",
"$ref":"midi+jsonschema://globalSchema"

}
 }
]

To retrieve a JSON Schema an Initiator may send an Inquiry: Get Property Data message with
the Resource set to "JSONSchema".

Note: The JSONSchema Resource is defined in the Foundational and Basic Resources
specification.

12.4.2.2 Example of a JSON Schema reference:

Initiator Sends an Inquiry: Get Property Data Message

Header Data {"resource":"JSONSchema","resId":"globalSchema"}

Property Data none

Responder Sends Reply to Get Property Data Message

Header Data {"status":200}

Property Data {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "deviceName": {
 "type": "string"
 },
 "audioOut": {
 "type": "string",
 "enum": ["USB","line"]
 },
 "cvPitch": {
 "type": "string",
 "enum": ["v/oct","hz/oct"]
 },
 "gate": {
 "type": "string",
 "enum": ["s-trig","v-trig"]
 }
 }
}

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 57 Dec. 8, 2020

12.5 Using Columns for List Resources

The "columns" Property may be used to describe a table for presenting selected data from a List
Resource.

The "columns" Property contains an array of objects. Each object becomes a column in the table.
Each object in the array contains a "property" or "link", and a "title".

12.5.1 Example ResourceList Object Record Containing a "columns" Property

Property Data [
 {

"resource": "ChannelList",
"canSubscribe": true,
"columns":[
 {"property": "channel", "title": "MIDI Channel"},
 {"property": "programTitle", "title": "Program Name"},
 {"link":"CMList", "title": "Controllers"}
]

 }
]

Property Value of "title" in each object becomes the title for each column in the table.

In this example, we get the title for three columns: channel, programTitle, and CMList.

MIDI Channel Program Name Controllers

Property Data from a List Resource provides the data to fill the table.

ChannelList Result for List Object Above

Property Data [
 {
 "title":"Ch.1",

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 58 Dec. 8, 2020

 "channel":1,
 "bankPC":[0,0,0],
 "programTitle":"Piano",
 "links":[
 {"resource":"CMList", "resId":"singch1"}
]
 },
 {
 "title":"Ch.13",
 "channel":13,
 "bankPC":[0,0,1],
 "programTitle":"Synth Lead 2",
 "links":[
 {"resource":"CMList", "resId":"singch2"}
]
 }
]

Each entry in the List Resource provides the data for a row in the table. The data chosen to
populate each field of a row is determined by the columns array.

In this example, the columns array above lists three items to fill the three fields of a row, two
"property" items and a "link" item to be used from each entry in the List Resource:

"channel"
"programTitle"
"CMList"

The data from the columns array and the List Resource in this example combine to generate the
following table.

MIDI Channel Program Name Controllers

1 Piano

13 Synth Lead 2

12.6 ResourceList properties for non-JSON Resources
Property Exchange does not use the schema "type" property which is usually found in a JSON
Schema because the "type" property does not support the necessary media types. That schema
"type" property shall be left empty in any JSON Schema used for PE. Instead, the "mediaType"
Property of the PE Header Data shall declare the data type.
The "schema" shall still provide the "title" Property of the Resource.

12.6.1 Example Non-JSON Resource:

Controllers

Controllers

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 59 Dec. 8, 2020

Property Data [

{
"resource":"X-Sample",
"canSet":"full",
"mediaTypes":["audio/wav"],
"encodings": ["MCoded7"],
"schema":{
"title":"Sample Upload",
"description":"Upload the sample here"

}
}

]

12.7 Extended Example of Property Data for ResourceList
This Example shows a mix of MMA/AMEI defined Resources, some with manufacturer
overrides from the default Property Values, and Manufacturer defined Resources.

Property Data [

 {"resource":"JSONSchema","encodings":["ASCII","zlib+Mcoded7"]},
{"resource": "DeviceInfo"},
{

"resource": "ChannelList",
"canSubscribe": true,
"columns": [
{"property": "perfChannel"},
{"property": "channel"},
{"property": "name"},
{"link": "ProgramList"},
{"link": "CMList"},
{"link": "X-Patch"}

]
 },
 {"resource": "ProgramList"},
 {"resource": "CMList"},
 {"resource": "ModeList"},
 {

 "resource": "CurrentMode",
 "canSet": "full",

 "canSubscribe": true
},
{
 "resource": "RawBuffer",
 "canSet": "full",
 "mediaTypes": ["application/octet-stream"],

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 60 Dec. 8, 2020

 "encodings": ["MCoded7"]
},
{
 "resource": "X-Tempo",
 "canSet": "full",
 "schema": {
 "title": "BPM",
 "description": "Set the Tempo, Global Setting",
 "type": "integer",
 "minimum": 40,
 "maximum": 240
 }

 },
 {

 "resource":"X-ProgramEdit",
 "canSet":"patch",
 "requireResId":true,
 "schema":{
 "title":"Edit Patch.",
 "description":"Edit the Patch",
 "type":"object",
 "$ref":"midi+jsonschema://programDetails"
 }
}

]

12.8 JSON Schema for ResourceList
The JSON Schema for ResourceList can be found at:

http://schema.midi.org/property-exchange/M2-103-S_v1-0_ResourceList.json

http://schema.midi.org/property-exchange/M2-103-S_v1-0_ResourceList.json

M2-103-UM Common Rules for MIDI-CI Property Exchange

Version 1.1 Page 61 Dec. 8, 2020

Revision History

Date Version Changes
Feb 20, 2020 1.0 Initial Version

Dec. 8, 2020 1.1 Fixed an error in field layout order in the message shown in Section
1.7. Moved example device from prior Appendix A to the
introduction area of the document. Minor Editorial Improvements.

https://www.midi.org
http://www.amei.or.jp

https://www.midi.org/
http://www.amei.or.jp/

	Table of Contents
	1. Introduction
	1.1 Background: MIDI 2.0 and MIDI-CI
	1.2 Property Exchange
	1.3 Related Documents
	1.3.1 MIDI Manufacturers Association Documents
	1.3.2 External Documents

	1.4 Terminology

	Property Exchange Overview
	1.5 Property Exchange Core Concepts and Mechanisms
	1.6 Steps to Use Property Exchange:
	1.7 PE Message Format
	1.8 Content of Examples in This Specification

	2. Example Minimal Implementation
	3. Property Exchange: MIDI-CI SysEx Messages
	3.1 Property Exchange Inquiries and Replies
	3.1.1 Inquiry: Get Property Data
	3.1.2 Inquiry: Set Property Data
	3.1.3 All MIDI-CI Messages used for Property Exchange

	3.2 Messages in Multiple Chunks
	3.3 Request ID

	4. Property Data Formats
	4.1 General Rules for JSON Data in the Property Data Field
	4.1.1 7-Bit Encoding of JSON String Values
	4.1.2 Example of Unicode Escape Sequence in a String Value
	4.1.3 CommonMark
	4.1.4 Manufacturer-specific Properties

	4.2 Non-JSON Data
	4.3 Compression and Encoding Property Data
	4.3.1 Mcoded7: 8-Bit to 7-Bit encoding

	4.4 Order of Processing for Compression and/or Encoding
	4.4.1 Uncompressed and Unencoded JSON Property Data
	4.4.2 Compressed and Encoded JSON Property Data
	4.4.3 Encoded Non-JSON Property Data
	4.4.4 Compressed and Encoded Non-JSON Property Data

	5. Header Data
	5.1 Header Format Restrictions
	5.1.1 JSON Header Data Property Additional Rules

	5.2 Common Header Properties in a Request
	5.3 Common Header Properties in a Reply
	5.4 Reporting Status and Errors: Reply Header
	5.4.1 Table of status codes used in a Reply message
	5.4.2 Other Error Mechanisms

	5.5 Extra Header Property for Using Property Data which is Not JSON Data
	5.6 Header Properties to be Defined in the Future

	6. Resources
	6.1 Resources Data Formats
	6.2 Using Resources and Property Data
	6.3 MMA/AMEI Defined Resources
	6.4 Custom, Manufacturer/Device-Specific Resources
	6.5 Resource ID
	6.6 List Resources: Retrieving an Array of Objects
	6.6.1 Property Data in a Reply to a List Resource Inquiry
	6.6.2 Pagination

	6.7 Simple Property Resources

	7. Resources and Resource Data in a Device
	7.1 ResourceList – Used Before Other PE Inquiries
	7.2 Foundational Resources Defined in other Specifications:
	7.3 Other Resources Defined in other Specifications:

	8. Full and Partial SET Inquiries
	8.1 Full SET Example:
	8.2 Partial SET Examples:

	9. Subscribing to Property Data
	9.1 Extra Request Header Properties for Subscriptions
	9.1.1 Selecting "partial", "full", or "notify"

	9.2 Replying to Subscription Messages
	9.3 Setting the Property Data when Sending the "command" Property with the Property Value "full"
	9.3.1 Example: Subscription to a Simple Property Resource

	9.4 Example Set of Transactions with Initiator Subscribing to Responder Resources
	9.5 Subscription End

	10. Notify Message
	10.1.1 Table of status codes used in a Notify message
	10.2 Notify: Terminate Inquiry
	10.3 Notify: Timeout Messages
	10.3.1 Notify: Timeout Wait
	10.3.2 Notify: Timeout Has Occurred

	11. Resource Link Properties
	11.1.1 Example of Using Links With a "resId" Property
	11.1.2 Example of Using Links Without a "resId" Property
	11.1.3 Example of Using a "role" Property of a Link
	11.1.4 Subscriptions and Linked Resources

	12. Resource: ResourceList
	12.1 Request ResourceList using Inquiry: Get Property Data
	12.2 Property Data for ResourceList Returned via a Reply to Get Property Data Message
	12.2.1 Additional Properties for List Resources

	12.3 Minimized Listing of AMEI/MMA Defined Resources in ResourceList using Default Values
	12.3.1 Example: ResourceList Object for the ChannelList Resource

	12.4 Schema Property for Manufacturer Specific JSON Resources
	12.4.1 Including a Schema Property in the ResourceList
	12.4.1.1 Example Resource List Object with a "schema" Property:

	12.4.2 Providing a Reference to an Expanded JSON Schema in the ResourceList
	12.4.2.1 Example ResourceList Object using a JSON Schema reference:
	12.4.2.2 Example of a JSON Schema reference:

	12.5 Using Columns for List Resources
	12.5.1 Example ResourceList Object Record Containing a "columns" Property
	ChannelList Result for List Object Above

	12.6 ResourceList properties for non-JSON Resources
	12.6.1 Example Non-JSON Resource:

	12.7 Extended Example of Property Data for ResourceList
	12.8 JSON Schema for ResourceList

	Revision History

