
MIDI 1.0 Detailed Specification
Document Version 4.2.1
Revised February 1996

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

This document is a combination of the
MIDI 1.0 Detailed Specification v 4.1.1 and the
MIDI 1.0 Addendum v 4.2.
The MIDI Time Code Specification is not included.

Revised February 1996

Copyright © 1994, 1995, 1996, 2020 MIDI Manufacturers Association Incorporated
Portions Copyright © 1985, 1989, MIDI Manufacturers Association Incorporated, Japan MIDI Standards
Committee

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
La Habra CA

MIDI 1.0 Detailed Specification
Document Version 4.2.1

TABLE OF CONTENTS

OVERVIEW
INTRODUCTION 1

HARDWARE 1

DATA FORMAT 3

MESSAGE TYPES 4
 CHANNEL MESSAGES 4
 SYSTEM MESSAGES 4

DATA TYPES 5
 STATUS BYTES 5
 RUNNING STATUS 5
 UNIMPLEMENTED STATUS 6
 UNDEFINED STATUS 6
 DATA BYTES 6

CHANNEL MODES 6

POWER-UP DEFAULT CONDITIONS 8

DETAILS
CHANNEL VOICE MESSAGES 9

TYPES OF VOICE MESSAGES 9
 NOTE NUMBER 10
 VELOCITY 10
 NOTE OFF 10
 CONTROL CHANGE 11
 CONTROLLER NUMBERS 11
 GLOBAL CONTOLLERS 12

GENERAL PURPOSE CONTROLLERS 12
 CONTROLLER EFFECT 13
 BANK SELECT 13
 LEGATO FOOTSWITCH 14

EFFECTS CONTROLLER DEFINITION 14
 SOUND CONTROLLERS 14
 PORTAMENTO CONTROLLER 16

REGISTERED AND NON-REGISTERED PARAMETER NUMBERS 17
 PROGRAM CHANGE 18

PITCH BEND CHANGE 19
 AFTERTOUCH 19

CHANNEL MODE MESSAGES 20
 MODE MESSAGES AS ALL NOTES OFF MESSAGES 20
 THE BASIC CHANNEL OF AN INSTRUMENT 20
 RECEIVERS MODE (OMNI ON/OFF & POLY/MONO) 20
 MONO MODE 21
 OMNI-OFF/MONO 22
 OMNI-ON/MONO 22
 MODES NOT IMPLEMENTED IN A RECEIVER 23
 ALL NOTES OFF 24
 ALL SOUNDS OFF 25
 RESET ALL CONTROLLERS 25
 LOCAL CONTROL 26

SYSTEM COMMON MESSAGES 27
 MTC QUARTER FRAME * 27
 SONG POSITION POINTER 27
 SONG SELECT 29
 RECEPTION OF SONG POSITION AND SONG SELECT 29
 TUNE REQUEST 29
 EOX 29

SYSTEM REAL TIME MESSAGES 30
 START OR CONTINUE MESSAGE 30
 STOP MESSAGE 31
 RELATIONSHIP BETWEEN CLOCKS AND COMMANDS 32
 PRIORITY OF COMMANDS 32
 ACTIVE SENSING 32
 SYSTEM RESET 33

SYSTEM EXCLUSIVE MESSAGES 34
 DISTRIBUTION OF ID NUMBERS 34
 UNIVERSAL EXCLUSIVE ID 35
 DEVICE ID 35
 SAMPLE DUMP 35
 GENERIC HANDSHAKING MESSAGES 36
 DEVICE INQUIRY 40
 FILE DUMP 41
 MIDI TUNING 47
 GENERAL MIDI SYSTEM MESSAGES* 52
 MTC FULL MESSAGE, USER BITS, REAL TIME CUEING* 53
 MIDI SHOW CONTROL* 53
 NOTATION INFORMATION 54
 DEVICE CONTROL (MASTER VOLUME AND BALANCE) 57
 MIDI MACHINE CONTROL* 58

* Specification document available separately (see Table VIII).

APPENDIX

ADDITIONAL EXPLANATIONS AND APPLICATION NOTES A-1
 RUNNING STATUS A-4
 ASSIGNMENT OF NOTE ON/OFF COMMANDS A-4
 VOICE ASSIGNMENT IN POLY MODE A-4
 "ALL NOTES OFF" WHEN SWITCHING MODES A-4
 MIDI MERGING AND ALL NOTES OFF A-4
 HOLD PEDAL AND ALL NOTES OFF A-5
 FURTHER DESCRIPTION OF HOLD PEDAL A-5
 PRIORITY OF MIDI RECEIVING A-5
 RELEASE OF OMNI A-5
 BASIC CHANNEL OF A SEQUENCER A-6
 TRANSPOSING A-6
 MIDI IMPLEMENTATION INSTRUCTIONS A-7
 MIDI IMPLEMENTATION CHART (BLANK)

TABLES
TABLE I SUMMARY OF STATUS BYTES T-1
TABLE II CHANNEL VOICE MESSAGES T-2
TABLE III CONTROLLER NUMBERS T-3
TABLE IIIa REGISTERED PARAMETER NUMBERS T-4
TABLE IV CHANNEL MODE MESSAGES T-5
TABLE V SYSTEM COMMON MESSAGES T-6
TABLE VI SYSTEM REAL TIME MESSAGES T-7
TABLE VII SYSTEM EXCLUSIVE MESSAGES T-8
TABLE VIIa UNIVERSAL SYSTEM EXCLUSIVE ID NUMBERS T-9
TABLE VIIb MANUFACTURER'S ID NUMBERS T-11

TABLE VIII ADDITIONAL OFFICIAL SPECIFICATION DOCUMENTS T-13

MIDI 1.0 Detailed Specification 4.2.1 1

INTRODUCTION
MIDI, the Musical Instrument Digital Interface, was established as a hardware and software
specification which would make it possible to exchange information (musical notes, program changes,
expression control, etc.) between different musical instruments or other devices such as sequencers,
computers, lighting controllers, mixers, etc. This ability to transmit and receive data was originally
conceived for live performances, although subsequent developments have had enormous impact in
recording studios, audio and video production, and composition environments.

This document has been prepared as a joint effort between the MIDI Manufacturers Association (MMA)
and the Japan MIDI Standards Committee (JMSC) to explain the MIDI 1.0 specification. This document
is subject to change by agreement between the JMSC and MMA. Additional MIDI protocol may be
included in supplements to this publication.

HARDWARE

The hardware MIDI interface operates at 31.25 (+/- 1%) Kbaud, asynchronous, with a start bit, 8 data
bits (D0 to D7), and a stop bit. This makes a total of 10 bits for a period of 320 microseconds per serial
byte. The start bit is a logical 0 (current on) and the stop bit is a logical 1 (current off). Bytes are sent
LSB first.

Circuit: (See Schematic - Page 2). 5 mA current loop type. Logical 0 is current ON. One output shall
drive one and only one input. To avoid ground loops, and subsequent data errors, the transmitter
circuitry and receiver circuitry are internally separated by an opto-isolator (a light emitting diode and a
photo sensor which share a single, sealed package). Sharp PC-900 and HP 6N138 opto-isolators have
been found acceptable. Other high-speed opto-isolators may be satisfactory. The receiver must require
less than 5 mA to turn on. Rise and fall times should be less than 2 microseconds.

Connectors: DIN 5 pin (180 degree) female panel mount receptacle. An example is the SWITCHCRAFT
57 GB5F. The connectors shall be labeled "MIDI IN" and "MIDI OUT". Note that pins 1 and 3 are not
used, and should be left unconnected in the receiver and transmitter. Pin 2 of the MIDI In connector
should also be left unconnected.

The grounding shield connector on the MIDI jacks should not be connected to any circuit or chassis
ground.

When MIDI Thru information is obtained from a MIDI In signal, transmission may occasionally be
performed incorrectly due to signal degradation (caused by the response time of the opto-isolator)
between the rising and falling edges of the square wave. These timing errors will tend to add up in the
"wrong direction" as more devices are chained between MIDI Thru and MIDI In jacks. The result is that,
regardless of circuit quality, there is a limit to the number of devices which can be chained (series-
connected) in this fashion.

2 Overview

MIDI Standard Hardware

NOTES:

1. Opto-isolator currently shown is Sharp PC-900
 (HP 6N138 or other opto-isolator can be used with appropriate changes.)

2. Gates "A" are IC or transistor.

3. Resistors are 5%

Cables shall have a maximum length of fifty feet (15 meters), and shall be terminated on each end by a
corresponding 5-pin DIN male plug, such as the SWITCHCRAFT 05GM5M. The cable shall be shielded
twisted pair, with the shield connected to pin 2 at both ends.

A MIDI Thru output may be provided if needed, which provides a direct copy of data coming in MIDI In.
For long chain lengths (more than three instruments), higher-speed opto-isolators should help to avoid
additive rise/fall time errors which affect pulse width duty cycle.

MIDI 1.0 Detailed Specification 4.2.1 3

DATA FORMAT
MIDI communication is achieved through multi-byte "messages" consisting of one Status byte followed
by one or two Data bytes. Real-Time and Exclusive messages are exception.

A MIDI-equipped instrument typically contains a receiver and a transmitter. Some instruments may
contain only a receiver or only a transmitter. A receiver accepts messages in MIDI format and executes
MIDI commands. It consists of an opto-isolator, Universal Asynchronous Receiver/Transmitter (UART),
and any other hardware needed to perform the intended functions. A transmitter originates messages in
MIDI format, and transmits them by way of a UART and line driver.

MIDI makes it possible for a user of MIDI-compatible equipment to expand the number of instruments
in a music system and to change system configurations to meet changing requirements.

MIDI messages are sent over any of 16 channels which are used for a variety of performance
information. There are five major types of MIDI messages: Channel Voice, Channel Mode, System
Common, System Real-Time and System Exclusive.

A MIDI event is transmitted as a "message" and consists of one or more bytes. The diagrams below show
the structure and classification of MIDI data.

TYPES OF MIDI BYTES:

Byte

Data Byte
(00H - 7FH)

Status Byte
(80H - FFH)

TYPES OF MIDI MESSAGES:

System
Common
Message

Channel
Message

System
Message

System
Exclusive
Message

System
Real Time
Message

Channel Mode
Message

Channel Voice
Message

Message Type

4 Overview

STRUCTURE OF A SINGLE MESSAGE:

Status

Status

Status Data Byte

Data Byte Data Byte

STRUCTURE OF SYSTEM EXCLUSIVE MESSAGES:

Status Data Bytes EOX

MESSAGE TYPES

Messages are divided into two main categories: Channel and System.

CHANNEL MESSAGES

A Channel message uses four bits in the Status byte to address the message to one of sixteen MIDI
channels and four bits to define the message (see Table II). Channel messages are thereby intended for
the receivers in a system whose channel number matches the channel number encoded into the Status
byte.

An instrument can receive MIDI messages on more than one channel. The channel in which it receives
its main instructions, such as which program number to be on and what mode to be in, is referred to as
its "Basic Channel". An instrument may be set up to receive performance data on multiple channels
(including the Basic Channel). These are referred to as "Voice Channels". These multiple-channel
situations will be discussed in more detail later.

There are two types of Channel messages: Voice and Mode.

VOICE: To control an instrument's voices, Voice messages are sent over the Voice Channels.

MODE: To define the instrument's response to Voice messages, Mode messages are sent over

an instrument's Basic Channel.

SYSTEM MESSAGES

System messages are not encoded with channel numbers. There are three types of System messages:
Common, Real-Time, and Exclusive.

MIDI 1.0 Detailed Specification 4.2.1 5

COMMON: Common messages are intended for all receivers in a system regardless of
channel.

REAL-TIME: Real-Time messages are used for synchronization and are intended for all clock-
based units in a system. They contain Status bytes only — no Data bytes. Real-
Time messages may be sent at any time — even between bytes of a message
which has a different status. In such cases the Real-Time message is either acted
upon or ignored, after which the receiving process resumes under the previous
status.

EXCLUSIVE: Exclusive messages can contain any number of Data bytes, and can be
terminated either by an End of Exclusive (EOX) or any other Status byte (except
Real Time messages). An EOX should always be sent at the end of a System
Exclusive message. These messages include a Manufacturer's Identification (ID)
code. If a receiver does not recognize the ID code, it should ignore the following
data.

So that other users and third party developers can fully access their instruments,
manufacturers must publish the format of the System Exclusive data following
their ID code. Only the manufacturer can define or update the format following
their ID.

DATA TYPES
There are two types of bytes sent over MIDI: Status Bytes and Data bytes.

STATUS BYTES

Status bytes are eight-bit binary numbers in which the Most Significant Bit (MSB) is set (binary 1).
Status bytes serve to identify the message type, that is, the purpose of the Data bytes which follow it.
Except for Real-Time messages, new Status bytes will always command a receiver to adopt a new status,
even if the last message was not completed.

RUNNING STATUS

For Voice and Mode messages only. When a Status byte is received and processed, the receiver will
remain in that status until a different Status byte is received. Therefore, if the same Status byte would
be repeated, it can optionally be omitted so that only the Data bytes need to be sent. Thus, with Running
Status, a complete message can consist of only Data bytes.

Running Status is especially helpful when sending long strings of Note On/Off messages, where "Note
On with Velocity of 0" is used for Note Off.

Running Status will be stopped when any other Status byte intervenes. Real-Time messages should not
affect Running Status.

See also: Additional Explanations and Application Notes

6 Overview

UNIMPLEMENTED STATUS

Any status bytes, and subsequent data bytes, received for functions not implemented in a receiver
should be ignored.

UNDEFINED STATUS

All MIDI devices should be careful to never send any undefined status bytes. If a device receives any
such code, it should be ignored without causing any problems to the system. Care should also be taken
during power-up and power-down that no messages be sent out the MIDI Out port. Such noise, if it
appears on a MIDI line, could cause a data or framing error if the number of bits in the byte are
incorrect.

DATA BYTES

Following a Status byte (except for Real-Time messages) there are either one or two Data bytes which
carry the content of the message. Data bytes are eight-bit binary numbers in which the Most Significant
Bit (MSB) is always set to binary 0. The number and range of Data bytes which must follow each Status
byte are specified in the tables in section 2. For each Status byte the correct number of Data bytes must
always be sent. Inside a receiver, action on the message should wait until all Data bytes required under
the current status are received. Receivers should ignore Data bytes which have not been properly
preceded by a valid Status byte (with the exception of "Running Status," explained above).

CHANNEL MODES

Synthesizers and other instruments contain sound generation elements called voices. Voice assignment
is the algorithmic process of routing Note On/Off data from incoming MIDI messages to the voices so
that notes are correctly sounded.

Note: When we refer to an "instrument" please note that one physical instrument may act as several
virtual instruments (i.e. a synthesizer set to a 'split' mode operates like two individual instruments).
Here, "instrument" refers to a virtual instrument and not necessarily one physical instrument.

Four Mode messages are available for defining the relationship between the sixteen MIDI channels and
the instrument's voice assignment. The four modes are determined by the properties Omni (On/Off),
Poly, and Mono. Poly and Mono are mutually exclusive, i.e., Poly disables Mono, and vice versa. Omni,
when on, enables the receiver to receive Voice messages on all voice Channels. When Omni is off, the
receiver will accept Voice messages from only selected Voice Channel(s). Mono, when on, restricts the
assignment of Voices to just one voice per Voice Channel (Monophonic.) When Mono is off (Poly On), a
number of voices may be allocated by the Receiver's normal voice assignment (Polyphonic) algorithm.

MIDI 1.0 Detailed Specification 4.2.1 7

For a receiver assigned to Basic Channel "N," (1-16) the four possible modes arising from the two Mode
messages are:

 Mode Omni

1 On Poly Voice messages are received from all Voice channels and
assigned to voices polyphonically.

2 On Mono Voice messages are received from all Voice Channels, and
control only one voice, monophonically.

3 Off Poly Voice messages are received in Voice channel N only, and are
assigned to voices polyphonically.

4 Off Mono Voice messages are received in Voice channels N through N+M-1,
and assigned monophonically to voices 1 through M, respectively.
The number of voices "M" is specified by the third byte of the Mono
Mode Message.

Four modes are applied to transmitters (also assigned to Basic Channel N). Transmitters with no
channel selection capability should transmit on Basic Channel 1 (N=1).

 Mode Omni

1 On Poly All voice messages are transmitted in Channel N.

2 On Mono Voice messages for one voice are sent in Channel N.

3 Off Poly Voice messages for all voices are sent in Channel N.

4 Off Mono Voice messages for voices 1 through M are transmitted in Voice
Channels N through N+M-1, respectively. (Single voice per

channel).

A MIDI receiver or transmitter operates under only one Channel Mode at a time. If a mode is not
implemented on the receiver, it should ignore the message (and any subsequent data bytes), or switch to
an alternate mode, usually Mode 1 (Omni On/Poly).

Mode messages will be recognized by a receiver only when received in the instrument's Basic Channel —
regardless of which mode the receiver is currently assigned to. Voice messages may be received in the
Basic Channel and in other Voice Channels, according to the above specifications.

Since a single instrument may function as multiple "virtual" instruments, it can thus have more than
one basic channel. Such an instrument behaves as though it is more than one receiver, and each receiver
can be set to a different Basic Channel. Each of these receivers may also be set to a different mode,
either by front panel controls or by Mode messages received over MIDI on each basic channel. Although
not a true MIDI mode, instruments operating in this fashion are described as functioning in "Multi
Mode."

8 Overview

An instrument's transmitter and receiver may be set to different modes. For example, an instrument
may receive in Mono mode and transmit in Poly mode. It is also possible to transmit and receive on
different channels. For example, an instrument may receive on Channel 1 and transmit on Channel 3.

POWER-UP DEFAULT CONDITIONS

It is recommended that at power-up, the basic channel should be set to 1, and the mode set to Omni
On/Poly (Mode 1). This, and any other default conditions for the particular instrument, should be
maintained indefinitely (even when powered down) until instrument panel controls are operated or
MIDI data is received. However, the decision to implement the above, is left totally up to the designer.

MIDI 1.0 Detailed Specification 4.2.1 9

CHANNEL VOICE MESSAGES
 Note-Off 8nH
 Note-On 9nH

Poly Key Pressure AnH
Control Change BnH (0 - 119)

 Program Change CnH
 Channel Pressure DnH
 Pitch Bend EnH

Channel Voice Messages are the bulk of information transmitted between MIDI instruments. They
include all Note-On, Note-Off, program change, pitch-wheel change, after-touch pressure and controller
changes. These terms are defined below.

A single Note-On message consists of 3 bytes, requiring 960 microseconds for transmission. When many
notes are played at the same time, the multiple Note-On messages may take several milliseconds to
transmit. This can make it difficult for MIDI to respond to a large number of simultaneous events
without some slight audible delay. This problem can be relieved to some degree by using the Running
Status mode described on page 5 and in the appendix (A1-3).

TYPES OF VOICE MESSAGES

NOTE-ON: Message is sent by pressing a key or from other triggering devices.

NOTE-OFF: Message is sent by releasing a key.

CONTROL CHANGE: Message is sent when a controller other than a key (e.g. a pedal,
wheel, lever, switch, etc.) is moved in order to modify the sound of a
note (e.g. introducing modulation, sustain, etc.). Control changes
are not used for sending parameters of tones (voices), such as
attack time, filter cut off frequency, etc.

PROGRAM CHANGE: When a "program" (i.e. sound, voice, tone, preset or patch) is
changed, the number corresponding to the newly selected program
is transmitted.

AFTER TOUCH: This message typically is sent by key after-pressure and is used to
modify the note being played. After touch messages can be sent as
Polyphonic Key Pressure or Channel Pressure.

PITCH BEND CHANGE: This message is used for altering pitch. The maximum resolution
possible is 14 bits, or two data bytes.

Voice messages are not exclusively for use by keyboard instruments, and may be transmitted for a
variety of musical purposes. For example, Note-On messages generated with a conventional keyboard
synthesizer may be used to trigger a percussion synthesizer or lighting controller.

10 Channel Voice Messages

NOTE NUMBER

Each note is assigned a numeric value, which is transmitted with any Note-On/Off message. Middle C
has a reference value of 60. This is the middle C of an 88 note piano-style keyboard though it need not be
physically located in the center of a keyboard.

0 12 24 36 48 60 72 84 96 108 120 127

piano range
a c c c c c c c c

VELOCITY

Interpretation of the Velocity byte is left up to the receiving instrument. Generally, the larger the
numeric value of the message, the stronger the velocity-controlled effect. If velocity is applied to volume
(output level) for instance, then higher Velocity values will generate louder notes. A value of 64 (40H)
would correspond to a mezzo-forte note and should also be used by device without velocity sensitivity.
Preferably, application of velocity to volume should be an exponential function. This is the suggested
default action; note that an instrument may have multiple tables for mapping MIDI velocity to internal
velocity response.

0 1 64 127

off ppp ppp mp mf f ff fff

 vvvvvvv = 64: if not velocity sensitive
 vvvvvvv = 0: Note-Off (with velocity of 64)

NOTE-OFF

MIDI provides two roughly equivalent means of turning off a note (voice). A note may be turned off
either by sending a Note-Off message for the same note number and channel, or by sending a Note-On
message for that note and channel with a velocity value of zero. The advantage to using "Note-On at
zero velocity" is that it can avoid sending additional status bytes when Running Status is employed.

Due to this efficiency, sending Note-On messages with velocity values of zero is the most commonly used
method. However, some keyboard instruments implement release velocity where a Note-Off code (8nH)
accompanied by a "velocity off" byte is used. A receiver must be capable of recognizing either method of
turning off a note, and should treat them identically.

 The three methods of using Note-On (9nH) or Note-Off (8nH) are as follows:

1. For a keyboard which does not implement Velocity, the note will be turned on using 9n,
kkkkkkk, 64 (40H) and may be turned off using 9n, 0kkkkkkk, 00000000 or 8n, 0kkkkkkk,
0xxxxxxx (a value of 64 [40H] is used for x).

MIDI 1.0 Detailed Specification 4.2.1 11

2. For a keyboard which incorporates Key On Velocity, but not Release Velocity the note is
turned on using 9n 0kkkkkkk, 0vvvvvvv and may be turned off using 9n, 0kkkkkkk, 00000000 or
8n, 0kkkkkkk, 0xxxxxxx (a value of 64 (40H) is recommended for x).

3. Where the keyboard implements both Key On Velocity and Release Velocity, a note is turned
on using 9n 0kkkkkkk, 0vvvvvvv, and turned off using 8n, 0kkkkkkk, 0vvvvvvv.

CONTROL CHANGE

The Control Change message is generally used for modifying tones with a controller other than a
keyboard key. It is not for setting synthesizer parameters such as VCF cut-off, envelope decay, etc.
There are some exceptions to the use of the Control Change message, such as the special Bank Select
message and the RPN/NRPN messages (listed below).

CONTROLLER NUMBERS

All controller number assignments are designated by agreement between the MMA and JMSC. The
numbers listed in Table III are specified for standard musical instrument applications. However, many
non-musical devices which implement MIDI, such as lighting controllers, may use designated controller
numbers at their discretion. Due to the limited number of controller numbers it would be impossible to
assign a number to every possible effect (musical and non-musical) used now and in the future. For this
reason, controllers are generally assigned only for purposes associated with musical instruments.

It is up to the manufacturer to inform their users of the fact that a device is using non-standard
controller assignments. Though controllers may be used for non-musical applications, they must still be
used in the format detailed in Table II. Manufacturers can request through the MMA or JMSC that
logical controllers be assigned to physical ones as needed. A controller allocation table should be
provided in the user's operation manual of all products.

A manufacturer wishing to control a number of device-specific parameters over MIDI should used non-
registered parameter numbers and the Data Entry controllers (Data Entry Slider, Increment, and
Decrement messages) as opposed to a large number of controllers. This alleviates possible conflict with
devices responding to the same control numbers unpredictably.

There are currently 120 controller numbers, from 0 through 119 (controller 120 was recently adopted as
a Channel Mode Message and is no-longer considered a Control Change). As shown below, controller
numbers 32 to 63 are used to define an LSB byte for corresponding controllers 0 through 31. Controller
classifications are as follows:

0 through 31 = MSB of most continuous Controller Data
32 through 63 = LSB for controllers 0 through 31
64 through 95 = Additional single-byte controllers
96 through 101 = Increment/Decrement and Parameter numbers

102 through 119 = Undefined single-byte controllers

A numeric value (controller number) is assigned to the controllers of the transmitting instrument. A
receiver may use the message associated with a controller number to perform any operation or achieve
any desired effect. Further, a single controller number may be used to change a number of parameters.

12 Channel Voice Messages

controller numbers are classified by various categories. Each controller number corresponds to one byte
of data.

Controller numbers 0 through 31 are for controllers that obtain information from pedals, levers, wheels,
etc. Controller numbers 32 through 63 are reserved for optional use as the LSB (Least Significant Byte)
when higher resolution is required and correspond to 0 through 31 respectively. For example, controller
number 7 (Volume) can represent 128 steps or increments of some controller's position. If controller
number 39, the corresponding LSB number to controller number 7, is also used, 14-bit resolution is
obtained. This provides for resolution of 16,384 steps instead of 128.

If 128 steps of resolution is sufficient the second byte (LSB) of the data value can be omitted. If both the
MSB and LSB are sent initially, a subsequent fine adjustment only requires the sending of the LSB. The
MSB does not have to be retransmitted. If a subsequent major adjustment is necessary the MSB must be
transmitted again. When an MSB is received, the receiver should set its concept of the LSB to zero.

All controller numbers 64 and above have single-byte values only, with no corresponding LSB. Of these,
64 through 69 have been defined for switched functions (hold pedal, etc.) while 91 through 95 are for
controlling the depth of certain external audio effects.

Control numbers 64 through 69 are assigned to functions normally associated with switches (i.e. sustain
or soft pedals). However these controllers can be used to send any continuous value. The reverse can
also be true for a continuous controller such as Modulation Wheel. While this controller is most often
used as a variable control, an on/off modulation switch can also be used. This would be accomplished by
sending the Modulation Controller number (01) and a data byte of either 0 (off) or 127 (on).

If a receiver is expecting switch information it should recognize 0-63 (00H-3FH) as "OFF" and 64-127
(40H-7FH) as "ON". This is because a receiver has no way of knowing whether the message information
is from a switch or a continuous controller. It is very important to always use an existing control
number. The control numbers already adopted for use are listed in Table III. We will discuss some of
them, but not all, below.

GLOBAL CONTROLLERS

If a receiving instrument is in Mode 4 (Omni Off/Mono) and is thus able to respond to more than one
MIDI channel, it is possible to use a Global Controller to affect all voices regardless of MIDI channel.
This is accomplished by sending any controller intended to affect all voices over the MIDI channel one
below the basic channel of the receiver. For example, if a receiving synthesizer in Mode 4 is responding
to channels 6 through 12, its basic channel is 6. Any controllers received on channel 5 would be Global
Controllers and would affect all voices. If the Basic Channel is 1, then the Global Channel wraps to
become 16, though not all receivers may provide this function.

GENERAL PURPOSE CONTROLLERS

Controller numbers 16-19 and 80-83 are defined as General Purpose Controllers. They may be used by a
manufacturer for any added functions able to send or receive some sort of control information needed for
a specific product. They do not have any intrinsic functions assigned to them. General Purpose
Controllers 16-19 are two byte controllers (with controller numbers 48-51 for an optional LSB). General
Purpose Controllers 80-83 are single byte controllers. As an example, an instrument with a special, user
definable joystick or lever assignable to any internal parameter could send and receive General Purpose
Controller numbers for sequencing.

MIDI 1.0 Detailed Specification 4.2.1 13

CONTROLLER EFFECT

All transmitters should send a value of 00 to represent minimum and 127 (7FH) to represent maximum.
For continuous controllers without a center detented position, it is recommended that the minimum
effect position correspond to 00, and the maximum effect position correspond to 127 (7FH).

Virtually all controllers are defined as 0 being no effect and 127 being maximum effect. There are three
defined controllers that are notably different: Balance, Pan and Expression.

BALANCE: A Balance Controller has been adopted as continuous controller number 8
(08H) with value 00 = full volume for the left or lower half, 64 (40H) = equal
balance, and 127 (7FH) = full volume for the right or upper half. This
controller determines the volume balance between two different sound
sources.

PAN: A Pan Controller has been adopted as continuous controller number 10 (0AH)
with value 00 = hard left, 64 (40H) = center, and 127 (7FH) = hard right. This
controller determines where a single sound source will be located in a stereo
field.

EXPRESSION: An Expression Controller has been adopted as continuous controller number
11 (0BH). Expression is a form of volume accent above the programmed or
main volume.

BANK SELECT

Bank Select is a special controller. The Bank Select message is an extension of the Program Change
message and is used to switch between multiple banks. For example, a bank select message could be
used to select more than 128 programs, or switch between internal memory and external RAM card.

Control Change numbers 00H and 20H are defined as the Bank Select message. 00H is the MSB and
20H is the LSB for a total of 14 bits. This allows 16,384 banks to be specified.

The transmitter must transmit the MSB and LSB as a pair, and the Program Change must be sent
immediately after the Bank Select pair. If their is any delay between these messages and they are
passed through a merging device (which may insert another message) the message may be interpreted
incorrectly.

The messages Bank Select MSB, LSB and Program number will select a specific program. After
switching to another bank, any Program Change messages transmitted singularly will select other
program in that bank.

After the receiver as received the entire Bank Select messages it will normally change to a new program.
The program must change upon the receipt of the Program Change message. However, the program
need not be changed for a note which is already sounding. When the Bank Select message is received,
the receiving device must remember that bank number in readiness for the following Program Change.
Bank Select alone must not change the program. This is to assure that multiple devices change
concurrently.

14 Channel Voice Messages

The 14 bit Bank Select value corresponds to bank numbers as follows:

 MSB LSB Bank Number
 00H 00H Bank 1
 00H 7FH Bank 128
 01H 00H Bank 129
 7FH 7FH Bank 16,384

As with program numbers, banks begin counting from 1. Thus the actual bank number will be (MIDI
value + 1).

LEGATO FOOTSWITCH

 Bn 44 vv Legato Footswitch
 vv = 00-3F Normal
 vv = 40-7F Legato

Legato Footswitch is a recent addition to the specification. This controller is used to turn monophonic
legato response in a receiving instrument on and off. When turned on the instrument goes into a
monophonic mode; if a new Note-On is received before the Note-Off for the currently sounding note,
pitch is changed without re-attacking the envelopes or (if possible) playing the attack portion of the
sound. When turned off the voice assignment mode (polyphonic or monophonic) returns to the state it
was in prior to receiving the Legato On command.

Note: This message is not a replacement for proper Mode 4 legato operation. Nor is it a replacement for
sending Note-Offs for every Note-On sent. It is specifically intended as a useful performance controller.

EFFECTS CONTROLLER REDEFINITION

Controller numbers 91 – 95 are defined as Effects Depth 1 through Effects Depth 5 and can be used for
controlling various effects. Their former titles of External Effects Depth, Tremolo Depth, Chorus Depth,
Celeste (Detune) Depth, and Phaser Depth are now the recommended defaults.

SOUND CONTROLLERS

Controllers 46H through 4FH are defined as “Sound Controllers.” Manufacturers and users may map
any functions they desire to these ten controllers. However, to further aid standardization and easy set-
up for users, the MMA and JMSC may determine “default” assignments for these controllers. A
manufacturer may independently assign other functions to these controllers, but it should be understood
that the MMA and JMSC may later assign different defaults to them.

Five Sound Controller defaults have currently been defined by the MMA and JMSC:

Number Name Instruments
46H (70) Sound Controller #1 Sound Variation
47H (71) Sound Controller #2 Timber/Harmonic Intensity
48H (72) Sound Controller #3 Release Time
49H (73) Sound Controller #4 Attack Time
4AH (74) Sound Controller #5 Brightness

MIDI 1.0 Detailed Specification 4.2.1 15

SOUND VARIATION CONTROLLER:

Bn 46 vv Sound Variation

This controller is used to select alternate versions of a sound during performance. Note that it is
different from a program change in several ways:

1. The variation (alternate sound) is an intrinsic part of the program which is being played, and
is programmed in the patch.

2. The variation is usually related to the primary sound – for example, a sax and an overblown
sax, bowed and pizzicato strings, a strummed and muted guitar, etc.

3. The variation to be used is decided at the time of the Note-On. For example, if the value of
SVC is set to 00, notes are sounded, and then SVC is changed to 24H, the notes currently
sounding will not change. Any new notes will take the variation determined by the new SVC
value. If the old notes are released, they will finish in their original manner.

SVC actually acts as a multi-level switch. An instrument’s levels of variations should be mapped
over the entire 00-7FH range of the controller. For example, if an instrument had only a single SVC
switch, it would transmit a value of 00) for the primary sound and 7FH for the secondary sound. If
an instrument had four variations, it would transmit these as 00, 20H, 40H, and 7FH. The first
instrument would receive any value in the range of 40H-7FH to select its secondary sound.

TIMBRE CONTROLLERS:

Bn 47 vv Timbre/Harmonic Intensity
Bn 4A vv Brightness

The Harmonic Content controller (commonly known as “timbre”) is intended as a modifier of the
harmonic content of a sound, e.g. FM feedback, FM modulation amount, waveform loop points, etc.
The receiving instrument determines the application of this controller according to its voice
architecture.

Harmonic Content should be treated as an absolute rather than relative value, and should be
handled as a modulation input by the receiver.

The Brightness controller is aimed specifically at altering the brightness of the sound. In most sound
modules, it would correspond to a low pass filter’s cutoff frequency, although it might also control
EQ or a harmonic enhancer/exciter.

Brightness should be treated as a relative controller, with a data value of 40H meaning no change,
values less than 40H meaning progressively less bright, and values greater than 40H meaning
progressively more bright.

Both of these controllers are intended as a performance controllers – not as a sound parameter
editing controllers (in other words, these messages do not change the memorized data of a preset).
They have no fixed association with any physical controller.

The receiving instrument should be able to respond to these controllers while sustaining notes
without audible glitches or re-triggering of the sound. The effective range of these controllers may be
programmed per preset, if desired.

16 Channel Voice Messages

ENVELOPE TIME CONTROLLERS:

 Bn 48 vv Release Time
 Bn 49 vv Attack Time
 vv = 00 - 3F = shorter times (00 = shortest adjustment)
 vv = 40 = no change in times
 vv = 41 - 7F = longer times (7F = longest adjustment)

These controllers are intended to adjust the attack and release times of a sound relative to its pre-
programmed values. The manufacturer and user should decide which envelopes in a voice are
affected; the default should be all envelopes. These controllers should affect all envelopes affected
about to enter their release or attack phases (respectively); the manufacturer may allow an option to
affect envelope phases already started.

These envelope time controllers do not replace the effect attack or release velocity may have on the
envelope times of the sound; they should interact with them in a predictable manner. They have no
fixed association with a physical controller. The effective range of these controllers may be
programmed per preset, if desired.

These are intended as a performance controllers – not as a sound parameter editing controllers (in
other words, these messages do not change the memorized data of a preset). The receiving
instrument should be able to respond to these controllers while sustaining notes and without audible
glitches or re-triggering of the sound.

PORTAMENTO CONTROLLER

 Bn 54 kk
 n = channel
 kk = source note number for pitch reference

Portamento Control (PTC) is a recent addition, and defines a continuous controller that communicates
which note number the subsequent note is gliding from. It is intended for special effects in playing back
pre-sequenced material, so that legato with portamento may be realized while in Poly mode.

When a Note-On is received after a Portamento Control message, the voice’s pitch will glide from the key
specified in the Portamento Control message to the new Note-On’s pitch at the rate set by the
portamento time controller (ignoring portamento on/off).

A single Portamento Control message only affects the next Note-On received on the matching channel
(i.e. it is reset after the Note-On). Receiving a Portamento Control message does not affect the pitch of
any currently sustaining or releasing notes in Poly modes; if in Mono mode or if Legato Footswitch is
currently on, a new overlapped note event would result in an immediate pitch jump to the key specified
by the portamento Control message, and then a glide at the current portamento rate to the key specified
by the new Note-On.

In all modes, the note is turned off by a note that matches the Note-On key number; not the key number
stated in the Portamento Control message. Pitch bend offsets the pitch used by both the Portamento
Control starting note and the target Note-On.

If there is a currently sounding voice whose note number is coincident with the source note number, the
voice’s pitch will glide to the new Note-On’s pitch according to the portamento time without re-attacking.
Then, no new voice should be assigned.

MIDI 1.0 Detailed Specification 4.2.1 17

The single Portamento Control message only affects the next Note-On received on the matching channel
(in other words, it is reset after the Note-On). Receiving a Portamento Control message does not affect
the pitch of other currently sounding voices except a voice whose note number is coincident with the
source key number of the Portamento Control message in Poly mode.

Example 1:

MIDI Message Description Result
90 3C 40 Note-On #60 #60 on (middle C)
B0 54 3C PTC from #60 no change in current note
90 40 40 Note-On #64 re-tune from #60 to #64
80 3C 40 Note-Off #60 no change
80 40 40 Note-Off #64 #64 off

Example 2:

MIDI Message Description Result
B0 54 3C PTC from #60 no change
90 40 40 Note-On #64 #64 with glide from #60
80 40 40 Note-Off #64 #64 Off

REGISTERED AND NON-REGISTERED PARAMETER NUMBERS

Registered and Non-Registered Parameter Numbers are used to represent sound or performance
parameters. As noted below, Registered Parameters Numbers are agreed upon by the MMA and JMSC.
Non-Registered Parameter Numbers may be assigned as needed by individual manufacturers. The basic
procedure for altering a parameter value is to first send the Registered or Non-Registered Parameter
Number corresponding to the parameter to be modified, followed by the Data Entry, Data Increment, or
Data Decrement value to be applied to the parameter.

There are several rules and suggestions as to the use of these parameter numbers and controllers:

1. A manufacturer may assign any desired parameter to any Non-Registered Parameter Number.
This list should be published in the owner's manual.

2. Reception of Non-Registered Parameter Numbers should be disabled on power-up to avoid
confusion between different machines. Transmission of these numbers should be safe at any time
if this is done.

3. After the reception of Non-Registered (or Registered) Parameter Numbers has been enabled, the
receiver should wait until it receives both the LSB and MSB for a parameter number to ensure
that it is operating on the correct parameter.

4. The receiver should be able to respond accordingly if the transmitter sends only an LSB or MSB to
change the parameter number. However, since the transmitter can't know when reception was
enabled on the receiver which will be waiting for both the LSB and MSB (at least initially), it is
recommended that the LSB and MSB be sent each time a new parameter number is selected.

5. The Registered Parameter Numbers are agreed upon by the MMA and JMSC. Since this is a
standardized list, reception of these Registered Parameter Numbers may be enabled on power-up.

6. Once a new Parameter Number is chosen, that parameter retains its old value until a new Data
Entry, Data Increment, or Data Decrement is received.

18 Channel Voice Messages

PITCH BEND SENSITIVITY:

Pitch Bend Sensitivity is defined as Registered Parameter Number 00 00. The MSB of Data Entry
represents the sensitivity in semitones and the LSB of Data Entry represents the sensitivity in
cents. For example, a value of MSB=01, LSB=00 means +/- one semitone (a total range of two
semitones).

MASTER TUNING:

Registered Parameter numbers 01 and 02 are used for Master Tuning control. They are
implemented as follows:

RPN 01 - FINE TUNING:

Resolution: 100/8192 cents
Range: 100/8192* (-8192) to 100/8192* (+8191)

Control Value Displacement in cents from A440
MSB LSB
00 00 100/8192* (-8192)
40H 00 100/8192* (0)
7FH 7FH 100/8192* (+8191)

RPN 02 - COARSE TUNING:

Resolution: 100 cents
Range: 100* (-64) to 100* (+63)

Control Value Displacement in cents from A440
MSB LSB
00 XX 100* (-64)
40H XX 100* (0)
7FH XX 100* (+63)

PROGRAM CHANGE

This message is used to transmit the program or "patch" number when changing sounds on a MIDI
instrument. The message does not include any information about the sound parameters of the selected
tone. As the various parameters that constitute a program are very different from one MIDI instrument
to another it is much more efficient to address a sound simply by its internal number.

Program Change messages are most often sent when physically selecting a new sound on an instrument.
However, if the transmitting instrument does not produce its own sound, a button or any other physical
controller can be used for transmitting program change messages to receiving devices.

It is not often that the exact same tones are in the transmitting and receiving instruments, so some care
must be taken when assigning tones to a given tone number. The ability to reassign programs to a given
program change number should be part of an instrument's capabilities. Some instruments number their
internal patches in octal numerics. This should have no effect on the numbers used for patch change.
Numbering should begin with 00H and increment sequentially. For example, octal 11 would be 00H, 12
would be 01H, etc.

MIDI 1.0 Detailed Specification 4.2.1 19

It may not always be desirable for a tone change in a transmitting instrument to cause a program
change in a receiving instrument. Some means of disabling the sending or reception of program change
should be provided. Program change messages do not necessarily need to change tones. In some
instruments, such as a drum machine, the message may be used to switch to a different rhythmic
pattern. In MIDI controlled effects devices, the program change message may be used to select a
different preset effect.

Note: also see Bank Select.

PITCH BEND CHANGE

This function is a special purpose pitch change controller, and messages are always sent with 14 bit
resolution (2 bytes). In contrast to other MIDI functions, which may send either the LSB or MSB, the
Pitch Bender message is always transmitted with both data bytes. This takes into account human
hearing which is particularly sensitive to pitch changes. The Pitch Bend Change message consists of 3
bytes when the leading status byte is also transmitted. The maximum negative swing is achieved with
data byte values of 00, 00. The center (no effect) position is achieved with data byte values of 00, 64
(00H, 40H). The maximum positive swing is achieved with data byte values of 127, 127 (7FH, 7FH).

Sensitivity of Pitch Bend Change is selected in the receiver. It can also be set by the receiver or
transmitted via Registered Parameter number 00 00.

AFTERTOUCH

Two types of Aftertouch messages are available: one that affects an entire MIDI channel and one that
affects each individual note played. They are differentiated by their status byte. In either case, the
Aftertouch value is determined by horizontally moving the key (front-to-rear or left-to-right), or by
pressing down on the key after it "bottoms out". Devices such as wind controllers can send Aftertouch
from increasing breath pressure after the initial attack. The type of tone modification created by the
Aftertouch is determined by the receiver. Aftertouch may be assigned to affect volume, timbre, vibrato,
etc.

If a "Channel Pressure" (Dn, 0vvvvvvv) message is sent, then the Aftertouch will affect all notes playing
in that channel.

If a "Polyphonic Key Pressure" (An, 0kkkkkkk, 0vvvvvvv) message is sent discrete Aftertouch is applied
to each note (0kkkkkkk) individually.

20 Channel Mode Messages

CHANNEL MODE MESSAGES

(Control Change Status) BnH
 All Sound Off 120
 Reset All Controllers 121
 Local Control 122
 All Notes Off 123
 Omni Off 124
 Omni On 125
 Mono On (Poly Off) 126
 Poly On (Mono Off) 127

A Mode message is sent with the same Status Byte as a Control Change message. The second byte of the
message will be between 121 (79H) and 127 (7FH) to signify a mode message. Mode messages determine
how an instrument will receive all subsequent voice messages. This includes whether the receiver will
play notes monophonically or polyphonically and whether it will respond only to data sent on one
specific voice channel or all of them.

MODE MESSAGES AS ALL NOTES OFF MESSAGES

Messages 123 through 127 also function as All Notes Off messages. They will turn off all voices
controlled by the assigned Basic Channel. These messages should not be sent periodically, but only for a
specific purpose. In no case should they be used in lieu of Note-Off commands to turn off notes which
have been previously turned on. Any All Notes Off command (123-127) may be ignored by a receiver
with no possibility of notes staying on, since any Note-On command must have a corresponding specific
Note-Off command.

THE BASIC CHANNEL OF AN INSTRUMENT

Mode messages are recognized only when sent on the Basic Channel to which the receiver is assigned,
regardless of the current mode. The Basic Channel is set in the transmitter or receiver either by
permanent "hard wiring," by panel controls, or by System Exclusive messages, and cannot be changed by
any MIDI mode or voice message. Mode messages can only be transmitted and received on an
instrument's Basic Channel.

RECEIVER'S MODE (OMNI ON/OFF & POLY/MONO)

The receiver can be set to any of four modes which determine how it will recognize voice messages. The
four modes are set with two mode messages: Omni On/Off, and Poly/Mono.

 Mode 1: Omni On, Poly
 Mode 2: Omni On, Mono
 Mode 3: Omni Off, Poly
 Mode 4: Omni Off, Mono

MIDI 1.0 Detailed Specification 4.2.1 21

Mono and Poly determine how the receiver's voices will be assigned when more than one note is received
simultaneously. In Mono mode, each voice in the receiver will respond monophonically to note messages
on a particular MIDI channel. This would be like having several Monophonic synthesizers in a single
box. In Poly mode, voices in the receiver will respond to note messages polyphonically.

These four modes may be changed by panel controls on the receiver. Care must be taken, however, since
it is possible that the receiver may be "disabled" by setting it to a mode where it will not recognize or
correctly respond to data received from a transmitter. As the receiver has no way of knowing the mode of
the transmitter, there is no guarantee that a receiver will interpret messages as expected if it has been
manually set to a different mode.

The recommended start up condition is Omni Mode On. This allows two instruments to be connected and
played immediately without concern for selecting the instruments' basic channel. The receiver will
respond to voice messages on all MIDI channels. With Omni off, a receiver would only respond to the
voice messages on the Basic Channel to which it is set.

Voice Message Paths with Poly/Mono and Omni On/Off Mode Selections:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Channel Num.

MIDI In

Omni "Switch"
(Shown in Omni On Mode)

Poly/Mono "Switch"
(Shown in Poly Mode)

Mono Voice
Assigner

Poly Voice
Assigner

Basic Channel
Select "Switch"
(Shown @ Channel 1)

When the receiver is in Poly mode and more than one note is received on the recognized channel(s),
those notes will be played simultaneously to the limit of the receiver's number of voices. The
recognizable channel(s) refers to all MIDI channels when Omni is On, or to only the receiver's Basic
Channel when Omni is Off.

When the receiver is in Mono mode, notes are assigned differently depending on whether Omni mode is
On or Off.

MONO MODE

Mono mode is particularly useful for receiving MIDI data from guitar controllers, but can be used with
keyboards and other controller devices as well. It is useful for such purposes as independent pitch
bending of individual notes, portamento at specific rates between two notes, or transposition effects.

22 Channel Mode Messages

One of the reasons to use Mono mode is so that a receiver may respond in legato fashion to incoming
note messages. If a Note-On is received, and then a second Note-On received without the first Note-Off
being received, then the receiving instrument should change pitch to the new note, but not restart the
envelopes (they should continue as if the same note was still being held). For a transmitter wishing a
receiver to respond in legato fashion, the timing of the note messages would be like this:

 <Note-On #1> <Note-On #2> <Note-Off #1>, etc.

MIDI rules still apply - a Note-Off must eventually be sent for every note. Also see Legato Mode.

OMNI-OFF/MONO

The third byte of a Mono Message specifies the number of channels in which Monophonic Voice
messages are to be sent. If the letter M represents the number of acceptable MIDI channels, which may
range from 1 to 16, and the letter N represents the basic channel number (1-16), then the channel(s)
being used will be the current Basic Channel (N) through N+M-1 up to a maximum of 16. M=0 is a
special case directing the receiver to assign all its voices, one per channel, from the Basic Channel N
through 16.

TRANSMITTER: When a transmitter set to Omni-Off/Mono mode, voice messages are sent
on channels N through N+M-1. This means that each individual voice (or
note) is sent on a single channel. The number of transmitted channels is
limited to the number of voices in the transmitter. Additional notes will be
ignored. When transmitting from a 16 voice instrument whose basic
channel number N is set higher than 1, N+M-1 will be greater than 16 and
notes assigned to nonexistent channels above 16 should not be sent. If full
16 voice transmission is possible, the basic channel N should be set to 1.
For example, a four-voice instrument set to a basic channel of 3 would
transmit note messages on channels 3, 4, 5 and 6.

RECEIVER: In a receiver set to Omni-Off/Mono mode, the voice messages received in

channels N through N+M-1 are assigned monophonically to its internal
voices 1 through M. If N=1, and M=16 (maximum), then the messages are
received on Channels 1 through 16. Should more than one Note-On
message be sent for a given channel, the receivers response is not specified.
Only one note (or voice) can be assigned to a given MIDI channel in this
mode. M=0 is a special case directing the receiver to assign its voices, one
per channel, from the basic channel N through 16, until all available voices
are used.

OMNI-ON/MONO

When a transmitter is set to Omni-On/Mono mode, voice messages for a single voice are sent on
channels N. If a receiver is set to Omni-On/Mono mode, then voice messages received from any voice
channel will control a single voice monophonically. Regardless of the number of MIDI channels being
received or the polyphony on any of them, the receiver will only play one note at a time.

TRANSMITTER: A transmitter may send a Mono message to put a receiver into Mono mode.
However, since a receiver may not be capable of Mono mode, the
transmitter may continue to send note messages polyphonically. Even if
the transmitter and receiver are both playing monophonically, multiple
Note-On messages can be sent .

MIDI 1.0 Detailed Specification 4.2.1 23

RECEIVER: When a Note-On message is sent in the Omni-On/Mono mode, the receiver
will play that note regardless of channel number. If the value of M is 2 or
greater when receiving a Mono On message and Omni is on, M is ignored
and the receiver will still be monophonic. When Omni is on, it is
inappropriate to send a Mono message with M greater than 1.

If a particular channel mode is not available on a receiver, it may ignore the message, or it may switch
to an alternate mode (usually mode 1, which is Omni On/Poly).

MODES NOT IMPLEMENTED IN A RECEIVER

A transmitter could possibly request a mode not implemented in a receiver. For example, a transmitter
might request Omni-Off Mono with M=2, but the receiver has only Omni-On Mono or Omni-On Poly
capability. In this situation the receiver could do one of two things: (1) It can ignore the request, and no
notes will sound; or (2) it can change to Omni-On Poly, and notes from both channels will play. The
latter choice is recommended so that the receiver will respond to notes from the different channels.

MONO POLY
M=1 M 1

use
Mode 2

use
Mode 1 Mode 3

Mode 1Mode 2Omni On

Omni Off

If Receiver does
not have Mode 4, it
can disregard messages,
or act as shown here

There is no way for a transmitter to know if a receiver has responded correctly to a particular Mode
message. By implementing the response outlined above, unexpected results will be minimized. If it is
possible for a receiver to ignore continuous controllers, it should do so in order that pitch bend or
modulation intended for a single voice will not affect all the voices in the receiver.

A transmitter may send Omni On or Omni Off messages and Poly or Mono messages in any order. A
receiver should set individual flags indicating Omni On/Off and Poly/Mono.

A receiver unable to accommodate a mode message such as Omni-Off Mono may switch to an alternate
mode such as Omni-On Poly. If an Omni-Off message is then received, the receiver should not change to
Omni-Off unless a Poly message is also received.

It is acceptable to repeat either of the Omni On/Off or Poly/Mono messages when changing modes. For
example, if a transmitter sends Omni Off Poly and later sends Omni On Poly, the retransmission of the
"Poly" message should cause no problem. If a receiver cannot accommodate an Omni-Off Mono mode
change from a transmitter, it should switch to an alternate mode such as Omni-On Poly as outlined
above.

24 Channel Mode Messages

1 0 0

0 1 0

Omni
Off Mono

Omni
Off Poly

Receive Mode Messages

On = 1
Off = 0

Mono = 1
Poly = 0

Omni Flag

Mono/Poly
Flag

(Power-Up Status) Receiver
Switches to
Omni-Off

Unit Changes
to Omni-On/Poly
(Mode 1)

Receiver Changes
to Omni-Off/Poly
(Mode 3)

Possible
Receive Modes

OMNI
MONO/POLY

Alternate
Receive Modes

Power Up

1
0

0
0

Omni-Off

0
1

0
1

1

3

N/A

N/A

1
(Omni-On, Poly)

1
(No Change)

Mono M >= 2

0
0

3

Omni-Off Poly

Receive Mode Messages

N/A = A Mode Which is not Implemented in the RecOMNI-ON = 1, OMNI-OFF = 0
MONO = 1, POLY = 0

ALL NOTES OFF

All Notes Off (123) is a mode message which provides an efficient method of turning off all voices turned
on via MIDI. While this message is useful for some applications, there is no requirement that a receiver
recognize it. Since recognition of All Notes Off is not required of the receiver, all notes should first be
turned off by transmitting individual Note-Off messages prior to sending an All Notes Off.

In a MIDI keyboard instrument, notes turned on via the local keyboard should be differentiated from
notes turned on via MIDI In.

Press
a Key

VOICE

MIDI Out MIDI In MIDI Thru

(Optional)

MIDI 1.0 Detailed Specification 4.2.1 25

In an instrument structured as shown above, it is possible that the instrument may not differentiate
between MIDI In and the local keyboard commands. If an All Notes Off is received via MIDI, then all
notes will be turned off, including those being played on the instrument's own keyboard. This is not
correct implementation of the All Notes Off message. All Notes Off should only turn off those notes that
were turned on via MIDI. If an instrument cannot differentiate between its local keyboard and incoming
MIDI messages, All Notes Off should be ignored.

Receivers should ignore an All Notes Off message while Omni is on (Modes 1 & 2). For example, if a
receiver gets an All Notes Off from a sequencer that inserts such messages whenever all keys are
released on a track, and two tracks were recorded on such a sequencer (even on different MIDI
channels), the All Notes Off message would cut off sustaining notes recorded on the other track.

While MIDI devices should be able to respond to the All Notes Off message, an All Notes Off message
should not be sent periodically as part of normal operation. This message should only be used to indicate
that the entire MIDI system is "at rest" (i.e. when a sequence has stopped). However, a receiver should
respond to an All Notes Off (unless Omni is on) whenever it is received, even when the system is not "at
rest".

Although other mode messages will turn off all notes, they should not be used as a substitute for the All
Notes Off message when desiring to turn off all notes. When the receiver is set to Omni-Off Poly mode
(Mode 3), All Notes Off will cancel Note-On messages on the basic channel only. When a receiver is set to
Omni-Off Mono mode (Mode 4), All Notes Off should only cancel Note-On messages on the channel over
which the message was received.

Note: See more on All Notes Off in the Additional Explanations and Application Notes.

ALL SOUND OFF

All Sound Off (120) is a mode message intended to silence all notes currently sounding by instruments
receiving on a specific MIDI channel. Upon reception, all notes currently on are turned off and their
volume envelopes are set to zero as soon as possible.

This message is not a replacement for the All Notes Off message, Note-Off messages, Hold Off, or Master
Volume Off. The correct procedure of sending a Note-Off for each and every Note-On must still be
followed.

Although originally intended for silencing notes on a MIDI sound module, the All Sound Off message
may be used to turn off all lights at a MIDI-controlled lighting console or to silence and clear the audio
buffer of a MIDI-controlled reverb of digital delay.

RESET ALL CONTROLLERS

When a device receives the Reset All Controllers message (121), it should reset the condition of all its
controllers (continuous and switch controllers, pitch bend, and pressures) to what it considers an ideal
initial state (Mod wheel to 0, Pitch Bend to center, etc.). Reception follows the same rules as All Notes
Off — Ignore if Omni is On .

Sequencers that wish to implement Reset All Controllers, but want to accommodate devices that do not
implement this command, should send what they believe to be the initial state of all controllers first,
followed by this message. Devices that respond to this message will end up in their preferred state,
while those that do not will still be in the sequencer's chosen initialized state.

26 Channel Mode Messages

LOCAL CONTROL

Channel Mode Message 122, Local Control, is used to interrupt the internal control path between the
keyboard and the sound-generating circuitry of a MIDI synthesizer. If 0 (Local Off) is received the path
is disconnected, keyboard data goes only to MIDI Out and the sound-generating circuitry is controlled
only by incoming MIDI data. If a 7FH (Local On) is received, normal operation is restored. Local Control
should be switchable from an instrument's front panel.

When a keyboard instrument is being used as a receiving device via MIDI, it may be desirable to dis-
connect the instrument's keyboard from its internal synthesizer so that local performance cannot
interfere with incoming data. This may also save scanning time and thus speed up response to MIDI
information.
Instruments should power-up in Local On mode. An instrument should continue to send MIDI
information from its keyboard while in Local Off.

MIDI 1.0 Detailed Specification 4.2.1 27

SYSTEM COMMON MESSAGES
MIDI Time Code Quarter Frame F1H
Song Position Pointer F2H

 Song Select F3H
 Tune Request F6H

EOX (End of Exclusive) F7H

MTC QUARTER FRAME

For device synchronization, MIDI Time Code uses two basic types of messages, described as Quarter
Frame and Full. There is also a third, optional message for encoding SMPTE user bits. The Quarter
Frame message communicates the Frame, Seconds, Minutes and Hours Count in an 8-message
sequence. There is also an MTC FULL FRAME message which is a MIDI System Exclusive Message.

See the separate MTC specification document for complete details.

SONG POSITION POINTER

A sequencer's Song Position (SP) is the number of MIDI beats (1 beat = 6 MIDI clocks) that have
elapsed from the start of the song and is used to begin playback of a sequence from a position other than
the beginning of the song. It is normally set to 0 when the START button is pressed to start sequence
playback from the very beginning. It is incremented every sixth MIDI clock until STOP is pressed. If
CONTINUE is pressed, it continues to increment from its current value. The current Song Position can
be communicated via the Song Position Pointer message and can be changed in a receiver by an
incoming Song Position Pointer message. This message should only be recognized if the receiver is set to
MIDI sync (external) mode.

Song Position Pointer is always multiplied by 6 times the MIDI clocks (F8H). Thus the smallest Song
Position change is 6 MIDI clocks, or 1/16 note. The result is then multiplied by the internal time base of
the sequencer. Here is an example:

If Song Position Pointer = 10

Multiply this times 6 MIDI clocks (10 X 6 = 60)

Multiply the result (60) times the sequencer time base. If the time base is 96 clocks per
beat, there are four internal clocks between each F8 so the result is 240 (60 X 4 = 240)

Set internal pointers to begin playback 240 clock tics into the sequence.

28 System Common Messages

The Start message (FAH), is treated by MIDI as if it were a command comprised of a Song Position
Pointer value of 0 plus a continue message (FBH).

Since the Start message and the Continue message can be received while the sequencer has been
stopped by a Stop message (FCH), the sequencer should be able to start quickly in response to a Start
message, even if the sequencer is in the middle of a song.

Song Position Pointer messages should be ignored if the instrument is not in MIDI sync mode (see
System Real Time messages section for details on MIDI sync).

RECOMMENDED USE OF SONG POSITION POINTER

Previously it was recommended that a device wait 5 seconds after transmitting a Song Position Pointer
message before it transmitted a Continue message and resumed sending MIDI Clocks. However, it is
now recommended that any device receiving a Song Position Pointer (SPP) message be able to correctly
receive a Continue message and subsequent MIDI Clocks while it is in the process of locating to the new
position in the song. Upon locating to the new position the device must then play in sync with the device
transmitting the SPP.

For example, if the transmitter sends an SPP message with a value of 4 (24 MIDI Clocks), and while
locating receives a Continue as well as an additional 3 MIDI Clocks, the receiving device should begin
from the 27th clock in the song.

MIDI 1.0 Detailed Specification 4.2.1 29

SONG SELECT

Specifies which song or sequence is to be played upon receipt of a Start message in sequencers and drum
machines capable of holding multiple songs or sequences. This message should be ignored if the receiver
is not set to respond to incoming Real Time messages (MIDI Sync).

RECEPTION OF SONG POSITION AND SONG SELECT

When a device receives and recognizes a Song Position or Song Select message, it can take a relatively
long time to implement the command. The receiver must continue to accept MIDI clocks after a Start
has been received, and increment its Song Position while it is computing and locating to the correct
address in memory for playback. For example, if a Song Position Pointer message is received which
contains a value of 4 (24 MIDI Clocks), and during the process of locating a Continue and 3 clocks are
received, the device should start playing from the point in its internal sequence corresponding to the
27th clock. If a Timing Clock message is missed while the receiver is dealing with Song Position, the
receiver may not synchronize correctly. Song Position or Song Select messages may only be sent when
the system is not playing.

TUNE REQUEST

Used with analog synthesizers to request that all oscillators be tuned.

EOX

Used as a flag to indicate the end of a System Exclusive transmission. A System Exclusive message
starts with F0H and can continue for any number of bytes. The receiver will continue to wait for data
until an EOX message (F7H) or any other non-Real Time status byte is received.

To avoid hanging a system, a transmitter should send a status byte immediately after the end of an
Exclusive transmission so the receiver can return to normal operation. Although any Status Byte (except
Real-Time) will end an exclusive message, an EOX should always be sent at the end of a System
Exclusive message. Real time messages may be inserted between data bytes of an Exclusive message in
order to maintain synchronization, and can not be used to terminate an exclusive message.

30 System Exclusive Messages

SYSTEM REAL TIME MESSAGES
 Timing Clock F8H
 Start FAH
 Continue FBH
 Stop FCH
 Active Sensing FEH
 System Reset FFH

System Real Time messages are used to synchronize clock-based MIDI equipment. These messages
serve as uniform timing information and do not have channel numbers.

Real Time messages can be sent at any time and may be inserted anywhere in a MIDI data stream,
including between Status and Data bytes of any other MIDI messages. Giving Real-Time messages high
priority allows synchronization to be maintained while other operations are being carried out.

As most keyboard instruments do not have any use for Real-Time messages, such instruments should
ignore them. It is especially important that Real-Time messages do not interrupt or affect the Running
Status buffer. A Real-Time message should not be interpreted by a receiver as a new status.

TIMING CLOCK: Clock-based MIDI systems are synchronized with this message, which is
sent at a rate of 24 per quarter note. If Timing Clocks (F8H) are sent during
idle time they should be sent at the current tempo setting of the transmitter
even while it is not playing. Receivers which are synchronized to incoming
Real Time messages (MIDI Sync mode) can thus phase lock their internal
clocks while waiting for a Start (FAH) or Continue (FBH) command.

START:

CONTINUE:

STOP:

Start (FAH) is sent when a PLAY button on the master (sequencer or drum
machine) is pressed. This message commands all receivers which are
synchronized to incoming Real Time messages (MIDI Sync mode) to start
at the beginning of the song or sequence.

Continue (FBH) is sent when a CONTINUE button is hit. A sequence will
continue from its current location upon receipt of the next Timing Clock
(F8H).

Stop (FCH) is sent when a STOP button is hit. Playback in a receiver should
stop immediately.

START OR CONTINUE MESSAGES

When a receiver is synchronized to incoming Real Time messages (MIDI Sync mode), the receipt of a
Start (FAH) or Continue (FBH) message does not start the sequence until the next Timing Clock (F8H)
is received. The FA and F8 should be sent with at least 1 millisecond time between them so the receiver
has time to respond. However, a receiver should be able to respond immediately to the first F8H after
receiving the Start or Continue.

MIDI 1.0 Detailed Specification 4.2.1 31

Neither the transmitter
nor the receiver advances
during this interval

FA F8 F8

When the receiver is operating off of its internal clock it may ignore all Start, Stop and Continue
messages or it may respond to these messages and start, stop or continue playing according to its own
internal clock when these messages are received over MIDI. This decision is left up to the designer.

STOP MESSAGE

When a sequencer is stopped it should send out the Stop message (FCH) immediately, so that any
synchronized devices will also stop. The sequencer's internal location should be set as it was in when
Stop was sent. This way, if Continue is pressed, all instruments connected to the master will continue
from the same point in the song without need for a Song Position Pointer message.

Upon receiving a Stop message (FCH), a receiver should stop playing and not increment its Song
Position when subsequent Timing Clock messages are received. The current Song Position should be
maintained in the event that a Continue is received and the sequence is continued from the point that it
was stopped. If a Song Position Pointer message is received, the device should change its internal Song
Position and prepare to begin playback from the new location.

If any Note-Off messages have not been sent for corresponding Note-Ons sent before Stop was pressed,
the transmitter should send the correct Note-Off messages to shut off those notes. An All Notes Off
message can also be sent, but this should not be sent in lieu of the corresponding Note-Off messages as
not every instrument responds to the All Notes Off message. In addition to note events, any controllers
not in their initialized position (pitch wheels, sustain pedal, etc.) should be returned to their normal
positions.

The following illustration shows a method to keep correct synchronization. These examples use an
internal timebase of 96 pulses per 1/4 note, or 4 internal clocks per MIDI clock (F8H).

MIDI In

MIDI
Out

Internal
Seq.

FA F8 F8 FC F8

FA

631 60 61 62 Stop0 2

F8 FC
at any time here

F8

MIDI In

MIDI
Out

Internal
Seq.

FB F8 F8

64 65 66 67 68 69 70

FB F8 F8

32 System Exclusive Messages

RELATIONSHIP BETWEEN CLOCKS AND COMMANDS

A sequencer may echo incoming timing and voice information out the MIDI Out port while playing its
own sequenced parts. System Real Time messages should always be given time priority when the data is
merged in this manner. To accomplish this, it is permissible to change the actual order of bytes to
accommodate Real Time messages. However, all Real Time bytes (F8H, FAH, FBH, FCH) must be sent
in the order in which they are received.

In the example below, a Note-On message is delayed slightly in order to give a priority to sending an
F8H.

F8 F8 F8 F8 F8 F8

F8 F8 F8 F8 F8 F8

F8

F8

MIDI In

MIDI Out

Note On

Note On

In order to avoid displacing clock messages in time, in addition to reversing their order with a voice
message (as shown above), they may be also be inserted between the bytes of voice, common, or other
messages. At no time should either an incoming clock byte or any voice message be dropped, but their
order can be changed to accommodate the need for accurate timing.

A sequencer may continue sending timing clock (F8H) while it is stopped. The advantage of this is that a
synchronized device can know the starting tempo of a sequence just as the Start command is received.

PRIORITY OF COMMANDS

Redundant commands, such as receiving a Stop command while already stopped, or a Start or Continue
command while already playing, should simply be ignored.

If a clock based device receives commands both from its front panel and via its MIDI In, priority should
be given to the most recently received command. However, it is also acceptable for a device to ignore
either its front panel or incoming Real Time commands depending on its current operating mode. For
example, a device set to respond to incoming MIDI clocks and Real Time commands may ignore the
commands received from its front panel. It may also ignore incoming Real Time commands while set to
operate with its internal clock.

ACTIVE SENSING

Use of Active Sensing is optional for either receivers or transmitters. This byte (FE) is sent every 300 ms
(maximum) whenever there is no other MIDI data being transmitted. If a device never receives Active
Sensing it should operate normally. However, once the receiver recognizes Active Sensing (FE), it then
will expect to get a message of some kind every 300 milliseconds. If no messages are received within this
time period the receiver will assume the MIDI cable has been disconnected for some reason and should
turn off all voices and return to normal operation. It is recommended that transmitters transmit Active
Sensing within 270ms and receivers judge at over 330ms leaving a margin of roughly 10%.

MIDI 1.0 Detailed Specification 4.2.1 33

The following flowchart shows the correct method of implementing Active Sensing:

MIDI
Reception
Interrupt

Receive Data

Clear Timer

Set Flag

FE
To
Other
Operaton

Increment
Timer

Turn All
Notes Off

Reset Flag

Flag 0

 300 ms

> 300 ms

Exit

Exit

Exit
Exit

Timer
Interrupt

FE ≠
_<

SYSTEM RESET

System Reset commands all devices in a system to return to their initialized, power-up condition. This
message should be used sparingly, and should typically be sent by manual control only. It should not be
sent automatically upon power-up and under no condition should this message be echoed.

If System Reset is recognized, the following operations should be carried out:

1) Set Omni On, Poly mode (if implemented)
2) Set Local On
3) Turn Voices Off
4) Reset all controllers
4) Set Song Position to 0
5) Stop playback
6) Clear Running Status
7) Reset the instrument to its power-up condition

34 System Exclusive Messages

SYSTEM EXCLUSIVE MESSAGES
 System Exclusive F0H

System messages are not assigned to any particular MIDI channel. Thus, they will be recognized by
MIDI receivers regardless of the basic channel to which they are set. System Exclusive messages,
however, have a different purpose. Each instrument's System Exclusive messages (hereafter abbreviated
as "Exclusive" messages) have their own special format according to an assigned manufacturer's ID
number.

Exclusive messages are used to send data such as patch parameters, sampler data, or a sequencer
memory bulk dump. A format which is appropriate to the particular type of transmitter and receiver is
required. For example, an Exclusive message which sets the feedback level for an operator in an FM
digital synthesizer will have no corresponding or meaningful function in an analog synthesizer.

Since the purpose of MIDI is to connect many kinds of musical instruments and peripheral equipment, it
is best not to use Exclusive messages to convey real-time performance information (with the exception of
special Universal messages described below). Performance information is best sent via Channel Voice
messages in real time. Receivers should ignore non-universal Exclusive messages with ID numbers that
do not correspond to their own ID.

To avoid conflicts with non-compatible Exclusive messages, a specific ID number is granted to
manufacturers of MIDI instruments by the MMA or JMSC. By agreement between the MMA and JMSC
when an ID number is given, the Exclusive format which is used under that ID number must be
published within one year. "Published", in this context, means not only utilizing the format, but also
printing the information in the product's owner's manual and/or technical materials published by the
manufacturer. This is consistent with one of the fundamental purposes of MIDI, which is to publicize
information and foster compatibility.

Any manufacturer of MIDI hardware or software may use the system exclusive codes of any existing
product without the permission of the original manufacturer. However, they may not modify or extend it
in any way that conflicts with the original specification published by the designer. Once published, an
Exclusive format is treated like any other part of the instruments MIDI implementation — so long as
the new instrument remains within the definitions of the published specification.

Once an Exclusive format has been published, it should not be changed with the exception of bug fixes.
If a new System Exclusive format is released, it should be published in the same manner as the first
version.

DISTRIBUTION OF ID NUMBERS

American European Japanese Other Special
1 byte ID: 01 - 1F 20 - 3F 40 - 5F 60 - 7C 7D - 7F
3 byte ID: 00 00 01 00 20 00 00 40 00 00 60 00

00 1F 7F 00 3F 7F 00 5F 7F 00 7F 7F

00 and 00 00 00 are not to be used. Special ID 7D is reserved for non-commercial use (e.g. schools,
research, etc.) and is not to be used on any product released to the public. Since Non-Commercial codes
would not be seen or used by an ordinary user, there is no standard format. Special IDs 7E and 7F are
the Universal System Exclusive IDs..

MIDI 1.0 Detailed Specification 4.2.1 35

UNIVERSAL SYSTEM EXCLUSIVE

System Exclusive ID numbers 7E (Non-Real Time) and 7F (Real Time) are Universal Exclusive IDs,
used for extensions to the MIDI specification. The standardized format for both Real Time and Non-Real
Time Universal Exclusive messages is as follows:

F0H <ID number> <device ID> <sub-ID#1> <sub-ID#2> . . . F7H

The <device ID> and <sub-ID#1> <sub-ID#2> fields are described in context below. A complete
listing of the assigned Real time and Non-Real Time messages is given in TABLE VIIa.

DEVICE ID

Since System Exclusive messages are not assigned to a MIDI Channel, the Device ID (formerly referred
to as the "channel" byte) is intended to indicate which device in the system is supposed to respond. The
device ID 7F, sometimes referred to as the ‘all call’ device ID, is used to indicate that all devices should
respond.

In most cases, the Device ID should refer to the physical device being addressed (the "hunk of metal and
plastic" is a common term that has been used), as opposed to having the same meaning as channel or
referring to a virtual device inside a physical device. For reference, this also corresponds to old USI
discussions that included a "Unit ID" that was supposed to be attached to one UART and set of in/out
ports.

However, there are exceptions - for example, what Device ID to use for a dual-transport tape deck and
MMC commands? Some may feel more comfortable thinking of the Device ID as an "address" and allow
for the possibility that a single physical unit may be powerful enough to have more than one valid
address. (This also has more relevance as devices move from stand-alone units to cards in a computer.)

Therefore, Device ID is meant to refer to a single physical device or I/O port as a default. Sophisticated
devices - such as multi-transport tape decks, computers with card slots, or even networks of devices -
may have more than one Device ID, and such occurrences should be explained to the user clearly in the
manual. From one to sixteen virtual devices may be accessed at each Device ID by use of the normal
MIDI channel numbers, depending on the capabilities of the device.

SAMPLE DUMP STANDARD

A standard has been developed for sampler data dumps. It has been designed to work as an open or
closed loop system. The closed loop system implements handshaking to improve speed and error
recovery. This also accommodates machines that may need more time to process incoming data. The
open loop system may be desired by those wishing to implement a simplified version with no
handshaking.

Five of the basic messages are generic handshaking messages (ACK, NAK, Wait, Cancel & EOF), which
are also used in other applications – for example File Dump. The remaining messages are Dump
Request, Dump Header, Data Packets, and a Sample Dump Extensions message. The data formats are
given in hexadecimal.

36 System Exclusive Messages

GENERIC HANDSHAKING MESSAGES

ACK:

 F0 7E <device ID> 7F pp F7

pp Packet number

This is the first handshaking flag. It means "Last data packet was received correctly. Start sending
the next one." The packet number represents the packet being acknowledged as correct.

NAK:

 F0 7E <device ID> 7E pp F7

pp Packet number

This is the second handshaking flag. It means "Last data packet was received incorrectly. Please re-
send." The packet number represents the packet being rejected.

CANCEL:

 F0 7E <device ID> 7D pp F7

pp Packet number

This is the third handshaking flag. It means "Abort dump." The packet number represents the
packet on which the abort takes place.

WAIT:

 F0 7E <device ID> 7C pp F7

pp Packet number

This is the fourth handshaking flag. It means "Do not send any more packets until told to do
otherwise." This is important for systems in which the receiver (such as a computer) may need to
perform other operations (such as disk access) before receiving the remainder of the dump. An ACK
will continue the dump while a Cancel will abort the dump.

EOF:

 F0 7E <device ID> 7B pp F7

pp packet number (ignored)

This is a new generic handshaking flag which was added for the File Dump extension, and is
described fully under the File Dump heading.

MIDI 1.0 Detailed Specification 4.2.1 37

DUMP HEADER

F0 7E <device ID> 01 ss ss ee ff ff ff gg gg gg hh hh hh ii ii ii jj F7

ss ss Sample number (LSB first)
ee Sample format (# of significant bits from 8-28)
ff ff ff Sample period (1/sample rate) in nanoseconds (LSB first)
gg gg gg Sample length in words (LSB first)
hh hh hh Sustain loop start point word number (LSB first)
ii ii ii Sustain loop end point word number (LSB first)
jj Loop type (00 = forward only, 01 = backward/forward, 7F = Loop off)

DUMP REQUEST

F0 7E <device ID> 03 ss ss F7

ss ss Requested sample, LSB first

Upon receiving this message, the sampler should check to see if the requested sample number falls in a
legal range. If it is, the requested sample becomes the current sound number and is dumped to the
requesting master following the procedure outlined below. If it is not within a legal range, the message
should be ignored.

DATA PACKET

F0 7E <device ID> 02 kk <120 bytes> ll F7

kk Running packet count (0-127)
ll Checksum (XOR of 7E <device ID> 02 kk <120 bytes>)

The total size of a data packet is 127 bytes. This is to prevent MIDI input buffer overflow in machines
that may want to receive an entire message before processing it. 128 bytes, or 1/2 page of memory, is
considered the smallest reasonable buffer for modern MIDI instruments.

SAMPLE DUMP EXTENSIONS

All future extensions to the Sample Dump Standard will appear under the Sub-ID#1 (05) of the
Universal System Exclusive Non-Real Time message.

MULTIPLE LOOP POINT MESSAGES:

These messages were added as an extension to the Sample Dump Standard, allowing for the
definition of up to 16,383 pairs of loop points per sample. This cures the shortcoming of the Sample
Dump Standard allowing only 1 pair of loop points to be defined per sample. It also allows
modification of loop points without also having to send the sample itself.

The formats of these messages are as follows:

38 System Exclusive Messages

 Loop Point Transmission (17 bytes):

 F0 7E <device ID> 05 01 ss ss bb bb cc dd dd dd ee ee ee F7

 F0 7E <device ID> Universal System Exclusive Non-Real Time header
 05 Sample Dump Extensions (sub-ID#1)
 01 Multiple Loop messages (sub-ID#2)
 ss ss Sample Number (LSB first)
 bb bb Loop number (LSB first; 7F 7F = delete all loops)
 cc Loop type
 00 = Forwards Only (unidirectional)
 01 = Backwards/Forwards (bi-directional)
 7F = Off
 dd dd dd Loop start address (in samples; LSB first)
 ee ee ee Loop end address (in samples; LSB first)
 F7 EOX

 Loop Points Request (10 bytes):

 F0 7E <device ID> 05 02 ss ss bb bb F7

 F0 7E <device ID> Universal System Exclusive Non-Real Time Header
 05 Sample Dump Extensions (sub-ID#1)
 02 Loop Points Request (sub-ID#2)
 ss ss Sample Number (LSB first)
 bb bb Loop Number (LSB first; 7F 7F = request all loops)
 F7 EOX

One message is sent and one loop affected per loop request or transmission, with the obvious
exceptions of 'Delete All Loops' and 'Request All Loops'. If a Loop Message is sent with the same
number as an existing loop, the new information replaces the old. Loop number 00 00 is the same as
the sustain loop defined in the Sample Dump Standard.

MIDI 1.0 Detailed Specification 4.2.1 39

SAMPLE DUMP TRANSMISSION SCENARIO

Once a dump has been requested either from the front panel or over MIDI, the dump header is sent.
After sending the header, the master must time out for at least two seconds, allowing the receiver to
decide if it will accept the dump (enough memory, etc.). If the master receives a Cancel, it should abort
the dump immediately. If it receives an ACK, it will start sending data packets. If it receives a Wait, it
will pause indefinitely until another message is received. If nothing is received within the time-out, the
master will assume an open loop and begin sending packets.

A data packet consists of its own header, a packet number, 120 data bytes, a checksum, and an End Of
Exclusive (EOX). The packet number starts at 00 and increments with each new packet, resetting to 00
after it reaches 7FH. This is used by the receiver to distinguish between a new data packet and one
being resent. This number is followed by 120 bytes of data which form 30, 40 or 60 words (MSB first)
depending on the sample format.

Each data byte consists of 7 bits. If the sample format is 8-14 bit, two bytes form a word. Sample formats
of 15-21 bits require three bytes/word (yielding 40 words/packet). Sample formats of 22-28 bits require
four bytes/word (yielding 30 words/packet). Information is left-justified within the 7-bit bytes and
unused bits are filled in with zeros. For example, the sample word FFFH would be sent as 01111111B
01111100B. The word FFFH represent a full positive value (000H represents full negative). The
checksum is the XOR of 7E <device ID> 02 <packet number> <120 bytes>.

When a sampler is receiving a data dump, it should keep a running checksum during reception. If the
checksums match, it sends an ACK and wait for the next packet. If the checksums do not match, it sends
a NAK and waits for the next packet. If the next packet number does not match the previous one and the
sampler has no facility for receiving packets out of sequence, it should ignore the error and continue as if
the checksum had matched.

When a sampler is sending a data dump, it should send a packet and watch its MIDI In port. If an ACK
is received, it sends the next packet. If a NAK is received and the packet number matches that of the
previous packet, it re-sends that packet. If the packet numbers do not match and the sampler has no
facility to send packets out of sequence, it should ignore the NAK. If a Wait is received, the sampler
should watch its MIDI IN port indefinitely for another message and process it like a normal ACK, NAK,
Cancel, or illegal message (which would usually abort the dump). If nothing is received within 20ms, the
sampler can assume an open loop and send the next packet.

The packet numbers are included in the handshaking flags (ACK, NAK, Cancel, Wait) in order to
accommodate future machines that might have the intelligence to re-transmit specific packets out of
sequence (i.e. after subsequent packets have been received).

This process continues until there are less than 121 bytes to send. The final data packet will still consist
of 120 data bytes regardless of how many significant bytes actually remain. The unused bytes will be
filled out with zeros. The receiver should receive and handshake on the last packet. If the receiver's
memory becomes full, it should send a Cancel to the master.

40 System Exclusive Messages

DEVICE INQUIRY

The following two messages are used for device identification, and are categorized as Non-Real Time
System Exclusive General Information messages (sub-ID#1 = 06).

The format of the inquiry message is as follows:

F0 7E <device ID> 06 01 F7

F0 7E <device ID> Universal System Exclusive Non-real time header
06 General Information (sub-ID#1)
01 Identity Request (sub-ID#2)
F7 EOX

A device which receives the above message would respond as follows:

(Note that if <device ID> = 7FH then the device should respond regardless of what <device ID> it is
set to.)

F0 7E <device ID> 06 02 mm ff ff dd dd ss ss ss ss F7

F0 7E <device ID> Universal System Exclusive Non-real time header
06 General Information (sub-ID#1)
02 Identity Reply (sub-ID#2)
mm Manufacturers System Exclusive id code
ff ff Device family code (14 bits, LSB first)
dd dd Device family member code (14 bits, LSB first)
ss ss ss ss Software revision level. Format device specific
F7 EOX

Note that if the manufacturers id code (mm) begins with 00H then the above message is extended by two
bytes to handle the additional manufacturers id code.

MIDI 1.0 Detailed Specification 4.2.1 41

FILE DUMP

File Dump provides a protocol for transmitting files from one computer to another using MIDI. There
are two primary motivations for this protocol: transmitting MIDI Files (especially tempo maps) between
computers and small ROM/microcomputer-based “boxes”; and transmitting files of any type, including
MIDI files, between two computers of different types. The filename is sent with the file, so that several
files may be sent one after another with as little user interaction as necessary.

All File Dump messages are Exclusive Non-Real Time messages (sub-ID#1 = 07), and begin with the
following header:

F0 7E <device ID> 07 <sub-ID#2> ss ...

<device ID> device ID of message destination (7F is also acceptable here)
07 File Dump (sub-ID#1)
<sub-ID#2> file dump message type:

01 Header
02 Data Packet
03 Request

ss device ID of message source (7F “all-call” is NOT acceptable here)

The source device ID is included so that it may be used by the receiver of this message in all packets
which it sends back to the sender of this message. In other words, if the handshake of this transfer is
between device A and device B, all messages going from A to B specify B as the destination of the
message, and all messages going back from B to A specify A as the destination of the message. In order
to do this, the first message to B must also specify A as the source of the first message, so that B knows
the device ID of who to respond to for all response messages.

REQUEST

F0 7E <device ID> 07 03 ss <type> <NAME> F7

<device ID> device ID of request destination (will become file sender)
ss device ID of requester (will become file receiver)
<type> four 7-bit ASCII bytes: type of file
<NAME> filename: 7-bit ASCII bytes terminated by the message’s F7

<type> describes what type of file, in a general sense, is being requested. Only the types shown below
should be used; you should only use any other type if you know that the receiver will recognize it. If the
device receiving a request doesn’t support the requested type, it should send the Cancel message
described below.

Recommended
<type> DOS Extension Description
MIDI MID It’s a MIDI File
MIEX MEX It’s a MIDIEX File
ESEQ ESQ It’s an ESEQ File
TEXT TXT It’s a 7-bit ASCII Text File
BIN<space> BIN It’s a binary file (such as any MS-DOS file)
MAC<space> MAC It’s a Macintosh file (with MacBinary header)

If <type> is MAC, this means a Macintosh file is being requested. Because Macintosh files contain two
“forks,” and other important Finder information, they are sent as their MacBinary image. Note that
programs wishing to transmit only MIDI Files, even on the Macintosh, won’t need to worry about

42 System Exclusive Messages

MacBinary, because MIDI Files must always use the MIDI designation to be universally recognized as
MIDI Files.

The filename may be any length, and may be omitted entirely. If it is omitted, it means “whatever is
currently loaded.” The filename may contain only printable ASCII characters (20H through 7EH).
Colons and backslashes may optionally be interpreted as path specifiers: these characters should be
avoided in filenames if this behavior is not desired by the user. If the device receiving the request
message does not have a file system, it should send whatever is currently loaded, using a null filename.

If the device receiving the request message is a computer, it should initiate a transfer if it recognizes the
filename, or if there is no filename but there is a “currently loaded” file. If these conditions aren’t met, it
may either prompt the user for a valid filename (displaying the filename supplied in the dump message),
or just send the Cancel message back to the requester. If the user is to be prompted, the Wait message
should be sent to the requester so that it knows that it may be awhile before the transfer is initiated or a
Cancel is to be sent.

HEADER

F0 7E <device ID> 07 01 ss <type> <length> <NAME> F7

<device ID> device ID of requester/receiver
ss device ID of sender
<type> four 7-bit ASCII bytes: type of file
<length> four 7-bit bytes: actual (un-encoded) file length, LSB first
<NAME> filename: 7-bit ASCII bytes terminated by the message’s F7

<type> and <NAME> are exactly as described in the Dump Request message.

If the length of the file is not known (because it will be converted on the fly), zero may be sent as the
length.

If the sender is a small ROM-based “box” without files, it need not send a filename. If it is a computer,
and there is a filename associated with it, it should be sent in the header. As described above, it may be
any length, must only contain printable ASCII characters, and may contain path description characters.
For maximum compatibility, no path information should be sent. DOS-like machines should send the file
extension as part of the name, separated by a period, with no trailing spaces before the period.

If the receiver is a computer, and if the program running supports receiving files, it should modify the
filename if necessary to make it appropriate for its file system. For instance, if it is a DOS machine, and
the given filename contains a period, it should interpret everything after the period as the file’s
extension. If there is no period, it should use the appropriate extension listed above. If it is running
interactively, it should prompt the user with the filename supplied in the dump message, so that the
user can modify it if desired, if no name is sent, or if a file by that name already exists. If the user is to
be prompted, the Wait message should be sent to the sender so that it knows that it may be awhile
before the transfer is continued or a Cancel is sent.

If the receiver is a small ROM-based “box” without files, or a program on a computer which only expects
this protocol to replace the file currently in memory, it should simply ignore the filename and replace its
current memory contents with the contents of the transmitted file, if the file is a supported type.

DATA PACKET

F0 7E <device ID> 07 02 <packet #> <byte count> <data> <chksm> F7

<device ID> device ID of receiver

MIDI 1.0 Detailed Specification 4.2.1 43

<packet #> one-byte packet count
<byte count> one-byte packet size: number of encoded data bytes

minus one
<data> the data, encoded as described below
<chksm> one-byte checksum (XOR of all bytes which

follow F0 up to the checksum byte, similar to
sample dump)

The total size of a data packet may be slightly larger than for sample dump: 137 bytes maximum.
The packet number starts at 00 and increments with each new packet, resetting to 00 after it reaches
7FH. This is used by the receiver to detect missed packets. The byte count is the number of encoded data
bytes minus one: for example, 64 stored bytes of the file are encoded in 74 transmitted bytes (as
described below): the byte count would be 73. (Subtracting one allows sending 128 transmitted data
bytes: one would never need to send zero bytes).

Instead of nibblizing, which would double transmission time, the data is “7-bit-ized” so that the
transmission time is more like 12% more than sending it as 8-bit (which isn’t possible over MIDI). Each
group of seven stored bytes is transmitted as eight bytes. First, the sign bits of the seven bytes are sent,
followed by the low-order 7 bits of each byte. (The reasoning is that this would make the auxiliary bytes
appear in every 8th byte without exception, which would therefore be slightly easier for the receiver to
decode.) The seven bytes:

AAAAaaaa BBBBbbbb CCCCcccc DDDDdddd EEEEeeee FFFFffff GGGGgggg

are sent as:

0ABCDEFG
0AAAaaaa 0BBBbbbb 0CCCcccc 0DDDdddd 0EEEeeee 0FFFffff 0GGGgggg

From a buffer to be encoded, complete groups of seven bytes are encoded into groups of eight bytes. If the
buffer size is not a multiple of seven, there will be some number of bytes left over after the groups of
seven are encoded. This short group is transmitted similarly, with the sign bits occupying the most
significant bits of the first transmitted byte. For example:

AAAAaaaa BBBBbbbb CCCCcccc

are transmitted as:

0ABC0000 0AAAaaaa 0BBBbbbb 0CCCcccc

Since the maximum packet size is 128 transmitted bytes, this corresponds to sixteen groups of seven
bytes, or 112 stored bytes.

44 System Exclusive Messages

HANDSHAKING FLAGS

For handshaking messages, the same generic set originally created for Sample Dump Standard – plus a
new EOF message – are to be used (Non-Real Time sub-ID#1 = 7B-7F). Since these first four message
were explained in the Sample Dump section, only newly significant information will be presented here.

F0 7E <device ID> <sub-ID#1> pp F7

<device ID> device ID of packet sender (message destination)
<sub-ID#1> handshake message:

7B End of File
7C Wait
7D Cancel
7E NAK
7F ACK

pp packet number

NAK:

 F0 7E <device ID> 7E pp F7

<device ID> device ID of packet sender (ACK receiver)
pp packet number

This should be sent whenever the length of a message was wrong, or the checksum was incorrect.
After receiving a NAK, the sender should resend the packet. After sending a NAK, the receiver
should expect the same packet to be resent. If the same packet has an error three consecutive times,
a Cancel should be sent instead of a NAK. If the packet number was wrong, such as if a packet (or a
NAK) was missed, the Cancel message should be sent instead of a NAK.

ACK:

 F0 7E <device ID> 7F pp F7

<device ID> device ID of packet sender (ACK receiver)
pp packet number

The packet number represents the packet being acknowledged as correct. The packet number in the
ACK responding to the Header is undefined.

WAIT:

 F0 7E <device ID> 7C pp F7

<device ID> device ID of Wait receiver
pp packet number (ignored)

This handshaking flag is used after receiving a File Header, Data Packet, or File Dump Request.
When responding to a Header it means “Do not send data packets until you receive an ACK (or a
Cancel).” When responding to a data packet, it means “Do not send any more packets until you
receive an ACK or NAK (or a Cancel).” When used in response to a File Dump Request, it means
“Your File Header (or a Cancel) will follow soon – be patient.”

MIDI 1.0 Detailed Specification 4.2.1 45

This message is important for systems in which the receiver may need to perform other operations,
such as disk access or prompting the user, before processing the remainder of the dump. A slow
device may in fact wish to transmit a Wait every time it receives a File Header, Data Packet, or File
Dump Request, thus giving itself unlimited time in which to digest the received data and respond
appropriately.

CANCEL:

 F0 7E <device ID> 7D pp F7

<device ID> device ID of Cancel receiver
pp packet number (ignored)

This handshaking flag may be used at any time. It means “Abort dump.” The packet number
represents the packet on which the abort takes place, but is ignored by the receiver. This may be
sent by either the sender or receiver when any error is detected, such as incorrect packet numbers in
a data packet or a handshake message; or when a dump is canceled by the user. If the sender aborts
a transmission, it should use the receiver’s device ID in the Cancel message (which it put in the
header (<device ID>) in the first place). If the receiver aborts a transmission, it should use the
sender’s device ID in the Cancel message (which the sender put in the header (ss)).ACK

END OF FILE (EOF):

F0 7E <device ID> 7B pp F7

<device ID> device ID of receiver
pp packet number (ignored)

This is the fifth generic handshaking flag within MIDI, sub-ID#1 (7B). After sending the last packet
of a lengthy message (such as File Dump), the sender must send an EOF message to inform the
receiver that the entire file has been sent. This is critical if the length in the File Dump Header is 0
(which means that the file length is unknown), because this is the only way the receiver can know
the transmission is complete and correct. This message must be sent even if the correct length is
known at the beginning. EOF requires no response from the receiver.

FILE DUMP TRANSMISSION SCENARIO

The File Dump Request is optional. A device may request a file (or memory contents), using the Request
message, or a user may initiate a file dump without a request message being sent. Within 200 msec after
receiving the Request message EOX (F7), the sender must respond with a File Dump header, Wait, or
Cancel. If it responds with Wait, it may send a File Dump header or a Cancel message whenever it’s
good and ready.

The sender then sends a File Dump header message. Within 200 msec after receiving the Header EOX
(F7), the receiver must respond with ACK, Wait, or Cancel. If it responds with Wait, it may send an
ACK or a Cancel message whenever it’s good and ready. If the sender does not receive any message
during this time, it assumes open loop transmission, and proceeds as if an ACK had been received.

The sender then sends a data packet. As the receiver receives the data packet, it keeps a running
checksum. If the checksums match, and it can deal with the data immediately, it sends an ACK and
waits for the next packet. If it needs more than 50 msec to store the data, it sends a Wait message.
(After storing the data, it then sends an ACK to continue the process). If the checksums do not match, or
if the length is wrong, it sends a NAK and waits for the same packet to be resent. If the packet number
is not the one it was expecting, it sends a Cancel message and ignores all further data packets until a

46 System Exclusive Messages

new header is sent (in the open-loop case, the sender won’t ever receive a Cancel message). If the
receiver’s memory ever becomes full, even during the last packet, it should send a Cancel to the sender.

When a device is sending a data dump, it should send a packet and watch its MIDI IN port. If an ACK is
received, it should send the next packet immediately. If a NAK is received and the packet number
matches that of the previous packet, it re-sends that packet. If the packet number of an ACK or a NAK
do not match the number of the packet just sent, the sender should send a Cancel message, and abort
the transmission. If a Wait is received, it should watch its MIDI IN port indefinitely for another
message. If it receives an ACK or NAK, it should process it normally, and continue; if it receives a
Cancel or an illegal message, it should abort the dump process. If nothing is received in 50 msec after a
data packet or 200 msec after a header, it can assume an open loop and send the next packet.

After the receiver ACKs the last packet, the sender transmits an EOF. No ACK is required for this
message. The file dump is then complete.

Any packet may contain any number of bytes, up to 128 encoded data bytes. Most devices probably will
transmit several packets of equal size, and send what’s left over as a final packet. However, the receiver
should never make any assumption about packet size.

MIDI 1.0 Detailed Specification 4.2.1 47

MIDI TUNING

This is an addition to the MIDI specification which allows the sharing of “microtunings” (user-defined
scales other than 12-tone equal temperament) among instruments of different manufacture, and the
switching of these tunings during real-time performance.

The messages include:

– bulk tuning dump request (non-real-time)
– bulk tuning dump (non-real-time)
– single-note tuning change (real-time)

Even though the first two messages are in the Universal Non-Real Time area and the last in the Real
Time area, they keep the same sub-IDs to more obviously group them and possibly ease the parsing of
them. Single Note Retuning is a part of the proposal which allows retuning of individual MIDI note
numbers to new frequencies in real time as a performance control.

The standard does not attempt to dictate how a manufacturer implements microtuning, but provides a
general means of sharing tuning data among different instruments.

This goal does require shared assumptions which have some architectural implications. The standard
requires that any of the 128 defined MIDI key numbers (or at least those MIDI key numbers covered by
the instrument’s playable range) be tunable to any frequency within the proposed frequency range. The
standard also strongly suggests, but does not enforce, an exponential (constant cents) rather than linear
(constant Hertz) tuning resolution across the instrument’s frequency range.

The standard permits the changing of tunings in real-time, both by the selection of presets and on a per-
note basis. When a sounding note is affected by either real-time tuning message, the note should
instantly be re-tuned to the new frequency while it continues to sound; this change should occur without
glitching, forced Note-Offs, re-triggering or other audible artifacts (see section 4, “Additional”).

The standard provides for 128 tuning memory locations (programs). As with the MIDI program change
message, this is a maximum value. An instrument supporting the standard may have any lesser number
of tuning programs. The standard requires only that all existing tuning programs respond to the
messages as specified (See section 3, “Continuous Controller Messages”).

Although directly applicable to some existing instruments, the standard attempts to define a coherent
framework within which the designers of future instruments can profitably work. It is hoped that by
providing this framework the standard will make microtunability more easily implemented and more
common on MIDI instruments.

FREQUENCY DATA FORMAT

The frequency resolution of the standard should be stringent enough to satisfy most demands of music
and experimentation. The standard provides resolution somewhat finer than one-hundredth of a cent.
Instruments may support the standard without necessarily providing this resolution in their hardware;
the standard simply permits the transfer of tuning data at any resolution up to this limit.

Frequency data shall be sent via system exclusive messages. Because system exclusive data bytes have
their high bit set low, containing 7 bits of data, a 3-byte (21-bit) frequency data word is used for
specifying a frequency with the suggested resolution. An instrument which does not support the full
suggested resolution may discard any unneeded lower bits on reception, but it is preferred where
possible that full resolution be stored internally, for possible transmission to other instruments which
can use the increased resolution.

48 System Exclusive Messages

Frequency data shall be defined in units which are fractions of a semitone. The frequency range starts at
MIDI note 0, C = 8.1758 Hz, and extends above MIDI note 127, G = 12543.875 Hz. The first byte of the
frequency data word specifies the nearest equal-tempered semitone below the frequency. The next two
bytes (14 bits) specify the fraction of 100 cents above the semitone at which the frequency lies. Effective
resolution = 100 cents / 214 = .0061 cents.

One of these values (7F 7F 7F) is reserved to indicate not frequency data but a “no change” condition.
When an instrument receives these bytes as frequency data, it should make no change to its stored
frequency data for that MIDI key number. This is to prevent instruments which do not use the full range
of 128 MIDI key numbers from sending erroneous tuning data to instrument which do use the full range.
The three-byte frequency representation may be interpreted as follows:

 0xxxxxxx 0abcdefg 0hijklmn

 xxxxxxx = semitone
 abcdefghijklmn = fraction of semitone, in .0061-cent units

Examples of frequency data:

 00 00 00 = 8.1758 Hz (C – normal tuning of MIDI key no. 0)
 00 00 01 = 8.2104 Hz
 01 00 00 = 8.6620 Hz
 0C 00 00 = 16.3516 Hz
 3C 00 00 = 261.6256 Hz (middle C)
 3D 00 00 = 277.1827 Hz (C# – normal tuning of MIDI key no. 61)
 42 7F 7F = 439.9984 Hz
 43 00 00 = 440.0000 Hz (A-440)
 43 00 01 = 440.0016 Hz
 78 00 00 = 8372.0190 Hz (C – normal tuning of MIDI key no. 120)
 78 00 01 = 8372.0630 Hz
 7F 00 00 = 12543.8800 Hz (G – normal tuning of MIDI key no. 127)
 7F 00 01 = 12543.9200 Hz
 7F 7F 7E = 13289.7300 Hz (top of range)
 7F 7F 7F = no change (reserved)

BULK TUNING DUMP REQUEST

A bulk tuning dump request is as follows:

 F0 7E <device ID> 08 00 tt F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device
 08 sub-ID#1 = MIDI Tuning Standard
 00 sub-ID#2 = 00H, bulk dump request)
 tt tuning program number (0 – 127)
 F7 EOX

The receiving instrument shall respond by sending the bulk tuning dump message described in the
following section for the tuning number addressed.

BULK TUNING DUMP

MIDI 1.0 Detailed Specification 4.2.1 49

A bulk tuning dump comprises frequency data in the 3-byte format outlined in section 1, for all 128
MIDI key numbers, in order from note 0 (earliest sent) to note 127 (latest sent), enclosed by a system
exclusive header and tail. This message is sent by the receiving instrument in response to a tuning
dump request.

F0 7E <device ID> 08 01 tt <tuning name> [xx yy zz] ... chksum F7

F0 7E Universal Non-Real Time SysEx header
<device ID> ID of responding device
08 sub-ID#1 = MIDI Tuning Standard
01 sub-ID#2 = 01H, bulk dump reply)
tt tuning program number (0 – 127)
<tuning name> 16 ASCII characters
[xx yy zz] frequency data for one note (repeated 128 times)
chksum checksum (XOR of 7E <device ID> 01 tt <388 bytes>)
F7 EOX

If an instrument does not use the full range of 128 MIDI key numbers, it may ignore data associated
with un-playable notes on reception, but it is preferred where possible that the full 128-key tuning be
stored internally, for possible transmission to other instruments which can use the increased resolution.
On transmission, it may if necessary pad frequency data associated with un-playable notes with the “no
change” frequency data word defined above. For keys in the instrument’s key range, the pitch that is
sent should be the pitch that key would play if it were received as part of a note-on message. For keys
outside the key range, 7F 7F 7F may be sent.

SINGLE NOTE TUNING CHANGE (REAL-TIME)

The single note tuning change message (Exclusive Real Time sub-ID#1 = 08) permits on-the-fly
adjustments to any tuning stored in the instrument’s memory. These changes should take effect
immediately, and should occur without audible artifacts if any affected notes are sounding when the
message is received.

F0 7F <device ID> 08 02 tt ll [kk xx yy zz] F7

F0 7F Universal Real Time SysEx header
<device ID> ID of target device
08 sub-ID#1 (MIDI Tuning Standard)
02 sub-ID#2 (02H, note change)
tt tuning program number (0 – 127)
ll number of changes (1 change = 1 set of [kk xx yy zz])
[kk MIDI key number
xx yy zz] frequency data for that key (repeated ‘ll’ number of times)
F7 EOX

This message also permits (but does not require) multiple changes to be embedded in one message, for
the purpose of maximizing bandwidth. The number of changes following is indicated by the byte ll; the
total length of the message equals 8 + (ll x 4) bytes.

If an instrument does not support the full range of 128 MIDI key numbers, it should ignore data
associated with un-playable notes on reception.

50 System Exclusive Messages

This message can be used to make changes in inactive (background) tunings as well. This message may
also, at the discretion of the manufacturer, be transmitted by the instrument under particular
circumstances (for example, while holding down one or more keys and pressing a “send-single-note-
tuning” front panel button).

CHANGING TUNING PROGRAMS

A registered parameter number shall be allotted to select any of the instrument’s stored tunings as the
“current” or active tuning. Instruments which permit the storage of multiple microtunings should
respond to this message by instantly changing the “current” tuning to the specified stored tuning. This
change takes effect immediately and must occur without audible artifacts (notes-off, resets, re-triggers,
glitches, etc.) if any affected notes are sounding when the message is received.

As with the MIDI program change message, no assumptions are made as to the underlying architecture
of the instrument. For instance, in cases where layered or multi-timbral sounds might be assigned to
different tunings, so that more than one tuning might be active, the manufacturer may decide how best
to interpret this message. The basic channel number might prove useful in discriminating between
multiple active tunings, or a certain range of tuning programs might be set aside and defined as active.

The message is sent as a registered parameter number controller message, followed by either a data
entry, data increment, or data decrement controller message, e.g. (with running status shown):

Bn 64 03 65 00 06 tt (data entry)
Bn 64 03 65 00 60 7F (data increment)
Bn 64 03 65 00 61 7F (data decrement)

n = basic channel number
tt = Tuning Program number (1-128)

Likewise, a Tuning Bank Change Registered Parameter number is also assigned as follows:

Bn 64 04 65 00 06 tt (data entry)
Bn 64 04 65 00 60 7F (data increment)
Bn 64 04 65 00 61 7F (data decrement)

n = basic channel number
tt = Tuning Bank number (1-128)

For maximum flexibility, this Bank Number is kept separate from the normal Program Change Bank
Select (controller #00). However, an instrument may wish to link the two as a feature for the user,
especially if a tuning bank is stored alongside a patch parameter bank (for example, on a RAM
cartridge).

If an instrument receives a Tuning Program or Bank number for which it has no Program or Bank, it
should ignore that message. Standard mappings of “common” tunings to program numbers are not being
proposed at this time.

Additional

There is some question as to whether instantaneous response to real-time tuning changes is desirable in
every circumstance. In some performance situations it makes more sense if a tuning change affect only
those notes which occur subsequent to the change, and not affect sounding notes. But there are also
situations in which tuning changes should take place instantaneously, as specified in the standard, and
should affect sounding notes without disrupting their continuity.

MIDI 1.0 Detailed Specification 4.2.1 51

If the instrument responds well in the latter situation, some work-around is possible for the former. The
reverse is not true. Therefore the standard requires that tuning changes immediately affect sounding
notes. Manufacturers might, however, consider implementing a switchable “instantaneous/next-note-on”
option within an instrument.

Single Note Retuning is intended for performance. Because of there are two primary concerns: 1) the
RAM required for temporary copies of tuning tables; and 2) the computational load of smoothly updating
the pitch of affected active notes. It is clear that in order to recognize the Single Note Retune message, a
copy of the current Tuning Program needs to be kept in RAM. In a multi-timbral environment there is
potentially a copy for each virtual instrument. A high-end instrument could afford the upwards of 8K of
RAM needed for per-virtual-instrument copies. More modest instruments may choose to only implement
one alterable RAM table and either make it available only to the basic channel virtual instrument or
require that all instruments share the same tuning. Provided that it is explained in the user’s manual,
any of these methods is acceptable.

Additional information on alternate tunings:
The Just Intonation Network
MIDI Tuning Standards Committee
535 Stevenson St.
San Francisco, CA 94103

52 System Exclusive Messages

GENERAL MIDI SYSTEM MESSAGES

There is a defined set of Universal Non-Real Time SysEx messages for General MIDI (sub-ID#1 = 09).
The current messages (below) turn GM mode on/off on a sound module (should it have more than one
mode of operation):

Turn General MIDI System On:

F0 7E <device ID> 09 01 F7

F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (suggest using 7F ‘All Call’)
09 sub-ID#1 = General MIDI message
01 sub-ID#2 = General MIDI On
F7 EOX

Turn General MIDI System Off:

F0 7E <device ID> 09 02 F7

F0 7E Universal Non-Real Time SysEx header
<device ID> ID of target device (suggest using 7F ‘All Call’)
09 sub-ID#1 = General MIDI message
02 sub-ID#2 = General MIDI Off
F7 EOX

MIDI 1.0 Detailed Specification 4.2.1 53

MTC FULL MESSAGE, USER BITS, REAL TIME CUEING

While MTC Quarter Frame messages (System Common) handle the basic running work of the system,
they are not suitable for use when equipment needs to be fast-forwarded or rewound, located or cued to a
specific time, as sending them continuously at accelerated speeds would unnecessarily clog up or outrun
the MIDI data lines. For these cases, MTC Full Messages are used, which encode the complete time into
a single message. After sending a Full Message, the time code generator can pause for any mechanical
devices to shuttle (or "autolocate") to that point, and then resume running by sending quarter frame
messages.

Universal System Exclusive Real Time sub-ID#1 (01) is used for the MTC Full Message, and for defining
MTC User Bits. Real Time sub-ID#1 (05) is used for MIDI Cueing.

See the separate MTC Detailed Specification for complete details.

MIDI SHOW CONTROL

The purpose of MIDI Show Control is to allow MIDI systems to communicate with and to control
dedicated intelligent control equipment in theatrical, live performance, multi-media, audio-visual and
similar environments. Applications may range from a simple interface through which a single lighting
controller can be instructed to GO, STOP or RESUME, to complex communications with large, timed
and synchronized systems utilizing many controllers of all types of performance technology.

MIDI Show Control uses a single Universal System Exclusive Real Time sub-ID#1 (02) for all Show
commands (transmissions from Controller to Controlled Device).

See the separate MSC Detailed Specification for complete details.

54 System Exclusive Messages

NOTATION INFORMATION

Universal System Exclusive Real Time subID#1 (03) is used for communicating musical structure
information in real time.

The messages include Bar Marker, Time Signature (Delayed), and Time Signature (Immediate).

BAR MARKER

The Bar Marker message specifies that the next MIDI clock received is the first clock of a measure, and
thus a new bar.

The message format is as follows:

F0 7F <device ID> 03 01 aa aa F7

F0 7F Universal Real Time SysEx Header
<device ID> ID of target device (default = 7F [all])
03 sub ID#1 = Notation Information
01 sub ID#2 = Bar Number Message
aa aa bar number; lsb first

[00 40] not running
[01 40] - [00 00] count-in
[01 00] - [7E 3F] bar number in song
[7F 3F] running; bar number unknown

F7 EOX

The numbering system uses the largest possible negative number as the “not running” flag; count-in
bars are negative numbers until they reach zero, which is the last bar of count-in (systems that have
only 1 bar of count-in don’t have to deal with negative numbers – just count from “zero” on up); bar
numbers then increment through positive numbers, with the highest positive number reserved as
“running, but I don’t know the bar number” (or the bar number has exceeded 8K).

If MIDI clocks (F8s) are also being sent, this bar number takes effect at the next received F8. If MTC but
no MIDI clocks are being sent, this bar number takes effect at the next received F1 xx. It may be
displayed as soon as received (in the event that it was sent while a drum machine or sequencer is
paused, but has located to a new section of the song).

Please note that this message is intended for information and high-level synchronization as opposed to
low-level synchronization, and should not be taken as a substitute for other MIDI timing messages.

The Bar Marker message is critical for other Notation messages (such as Time Signature) which have
the option of taking effect immediately or on the next received Bar Marker message. In the later case,
extra information can be sent at any time during the previous bar without taking effect. This will
minimize clogging by allowing enough room between the last F8/F1 xx of a bar and the first F8/F1 xx of
the next. With the Bar Marker being sent every bar, a receiver does not have to keep track of MIDI
clocks to know exactly where it is.

Therefore, it is strongly suggested that the Bar Number be sent immediately after the last F8 or F1 xx
message of the previous bar, to prevent possible clogging, jitter, and/or message transposition (MIDI
mergers may also want to be sensitive to this message to prevent it getting delayed past a following F8).

TIME SIGNATURE

MIDI 1.0 Detailed Specification 4.2.1 55

The Signature Messages are used to communicate a new time signature to a receiving device. There are
two forms, Immediate and Delayed. The Immediate form (sub id #2 = 02H [bit 6 = reset]) takes effect
upon receipt (or on the next received MIDI clock if synchronized via MIDI sync). The Delayed form (sub-
ID#2 = 42H [bit 6 = set]) takes effect upon the receipt of the next Bar Marker message. However, it may
be displayed immediately.

Time Signature (Immediate):

F0 7F <device id> 03 02 ln nn dd bb cc bb [nn dd...] F7

F0 7F Universal Real Time SysEx header
<device id> ID of target device (default = 7F [all])
03 sub-ID#1 = Notation Information
02 sub-ID#2 = Time Signature - Immediate
ln number of data bytes to follow
nn number of beats (numerator) of time signature
dd beat value (denominator) of time signature (negative power of 2)
cc number of MIDI clocks in a metronome click
bb number of notated 32nd notes in a MIDI quarter note
[nn dd...] additional pairs of time signatures to define a compound time

signature within the same bar.
F7 EOX

Time Signature (Delayed):

F0 7F <device id> 03 42 ln nn dd bb cc bb [nn dd...] F7

F0 7F Universal Real Time SysEx header
<device id> ID of target device (default = 7F [all])
03 sub-ID#1 = Notation Information
42 sub-ID#2 = Time Signature - Delayed
ln number of data bytes to follow
nn number of beats (numerator) of time signature
dd beat value (denominator) of time signature

(negative power of 2)
cc number of MIDI clocks in a metronome click
bb number of notated 32nd notes in a MIDI quarter note
[nn dd...] additional pairs of time signatures to define a

compound time signature within the same bar.
F7 EOX

The additional data in [nn dd...] must always be in pairs. If there are not additional time signatures
specified, ln (the length of the data) = 4. It is incremented by multiples of 2 for every extra time
signature pair that exists within the bar.

The data format here duplicates that of the Standard MIDI File Time Signature Meta Event (FF 58),
with extra bytes for compound time signatures. The bytes for the compound time signatures were added
at the end so that the current Meta Event could be extended to match the format of this message, while
keeping the leading bytes of the event the same.

56 System Exclusive Messages

The burden is placed on the transmitter to indicate ahead of time what the time signature will be in the
next bar. It is not the responsibility of the receiver to count clocks and decode it. It is intended that
interpretation of the Notation family of messages be made as simple as possible for the receiver so that
devices with displays (which may not be following MIDI clocks) could easily pass useful information to
the user.

MIDI 1.0 Detailed Specification 4.2.1 57

DEVICE CONTROL

MASTER VOLUME AND MASTER BALANCE

These messages are intended to produce the same effect as volume and balance controls on a stereo
amplifier. They are intended mainly for General MIDI instruments (so that one Master Volume control
can simultaneously fade out all the layers in a sound module, for example), although there may be wider
applications.

Because these messages are intended to address “devices” as opposed to MIDI “channels” they have been
defined as Universal Real Time System Exclusive messages (sub-ID#1 = 04). The corresponding
“channel” messages are the controllers Channel Volume (formerly Main Volume) (CC number 07) and
Balance (CC number 08).

Master Volume:

F0 7F <device id> 04 01 vv vv F7

F0 7F <device id> Universal Real Time SysEx header
04 sub-ID#1 = Device Control
01 sub-ID#2 = Master Volume
vv vv Volume (lsb first); 00 00 = volume off
F7 EOX

Master Balance:

F0 7F <device id> 04 02 bb bb F7

F0 7F <device id> Universal Real Time SysEx header
04 sub-ID#1 = Device Control
02 sub-ID#2 = Master Balance
bb bb Balance (lsb first); 00 00 = hard left;

7F 7F = hard right
F7 EOX

In order to properly respond to these messages and their channel-aimed counterparts, a device must
internally track three volume and two balance scalars as follows:

1. Received on its own ID (which matches its knob on the front panel; if no knob or if knob is not
scanned then power up default is set at full volume)

2. Received on the ‘All Call’ or ‘broadcast’ ID (7F)

3. Channel messages.

This way, each virtual/channel-based instrument can be individually mixed, then a device could be
individually scaled, and then all devices could be brought down together without forgetting their
individual levels.

58 System Exclusive Messages

MIDI MACHINE CONTROL

MIDI Machine Control is a general purpose protocol which initially allows MIDI systems to
communicate with and to control some of the more traditional audio recording and production systems.
Applications may range from a simple interface through which a single tape recorder can be instructed
to PLAY, STOP, FAST FORWARD or REWIND, to complex communications with large, time code based
and synchronized systems of audio and video recorders, digital recording systems and sequencers.

MIDI Machine Control uses two Universal Real Time System Exclusive messages (sub-ID#1's), one for
Commands (transmissions from Controller to Controlled Device), and one for Responses (transmissions
from Controlled Device to Controller). (sub-ID#1 = 06, 07)

See the separate MMC Detailed Specification for complete details.

MIDI 1.0 Detailed Specification 4.2.1 A-1

ADDITIONAL EXPLANATIONS AND APPLICATION
NOTES

RUNNING STATUS

Running status is a convenient short cut in transmission of data which saves time and makes it easier to
minimize delays of transmitted MIDI data from the actual performance. With Running Status, after the
first message, additional messages of the same type (i.e. Note On messages on the same MIDI channel)
are sent without repeating the status byte for every message. Receivers must understand that if a data
byte is received as the first byte of a message, the most recent, or "running" status is assumed.

For example, a note is normally played by transmitting a Note On Status Byte (90H) followed by the key
number value (0kkkkkkk) and the velocity value bytes (0vvvvvvv). With Running Status, all additional
notes on the same MIDI channel can be played by simply transmitting the key number and velocity
bytes. As long as all following data consists of Note Ons on the same MIDI channel the Note On status
byte need not be sent again.

Running Status is most useful for Note On and continuous controller messages. As notes can be turned
off by sending a Note On with a velocity value of 0, long strings of note messages can be sent without
sending a Status byte for each message. If the Note Off (8nH) message is used to turn notes off, a status
byte must be sent.

The following is an example of Running Status. On the top is a complete data stream with one Status
Byte for each pair of Data Bytes. Below that is a compressed data stream with only one Status Byte:

90H 3CH 27H 40H 2BH 43H 25H

90H 3CH 27H 90H 40H 2BH 90H 43H 25H

90H 3CH 27H 80H 3CH 40H 90H 3EH 29H

With
Status

With
Running
Status C Note On

(Vel. = 39)
E Note On
(Vel. = 43)

G Note On
(Vel. = 37)

90H 3CH 27H 3CH 00H 3EH 29H
C Note On
(Vel. = 39)

C Note Off
(Vel. = 0)

D Note On
(Vel. = 41)

With
Status

With
Running
Status

While the above examples pertain to Note On messages, Running Status may also be used for all Mode
and Control Change messages. Running Status can drastically reduce the amount of data sent by
Continuous Controllers.

In some cases, the receiver must keep the status byte of the mode messages in a Running Status buffer
even though the mode message is designated for a channel other than the receiver's basic channel. For
example, if an Omni Off mode message is sent followed by Running Status Control Change messages,
the Control Change messages can be properly recognized even though the Omni Off message may have
been ignored.

A-2 Additional Explanations and Application Notes

B0H 7CH 00H 01H 37H
Message:
Omni Off on CH 1 (ignore)

Message:
Controller 1 in CH 1
value 37H (recogniz

B0H Valid
Running Status

Buffer

Running Status Buffer and Response of Receiver to Different Messages
(Basic Channel = 3, Mode: Omni On)

The receiver should always hold the last status byte in a Running Status buffer in case the transmitter
is utilizing Running Status to reduce the number of bytes sent. This also means the receiver has to
determine how many data bytes (one or two) are associated with each message. It is recommended that
the Running Status buffer be set up as follows:

1. Buffer is cleared at power up.
2. Buffer stores the status when a channel message is received.
3. Buffer is cleared when a System Exclusive or Common status message is received.
4. Nothing is done to the buffer during reception of real time messages.
5. The data bytes are ignored when the value of the status buffer is 0 (zero).

There are currently two undefined System Common status bytes (F4H and F5H). Should one of these
undefined messages be received, it should be ignored and the running status buffer should be cleared.
There are currently two undefined Real Time status bytes (F9H, FDH). Since these may convey only
timing information, they should always be ignored, and the running status buffer should remain
unaffected.

If Running Status is being used and a receiver is connected to a transmitter after the transmitter has
powered on it will not play until the next Status byte is transmitted. For this reason it is recommended
that the status be refreshed every few seconds.

To Summarize:

A transmitter may or may not be programmed to take advantage of Running Status. Using Running
Status, notes may be turned off by sending a Note On message with zero velocity . It is the responsibility
of the receiver to always recognize both normal and running status modes.

A receiver should take into consideration that a transmitter can send messages in either Running Status
or normal modes. The following flowchart shows an example of an interrupt-driven routine:

MIDI 1.0 Detailed Specification 4.2.1 A-3

?

?

Store in
Running Status

Buffer

Clear Third
Byte Flag

?

Store it in FIFO

Increment
Pointer + 1

(do not
increment

pointer here)

?

?

?

?

Ignore
Data Byte

Clear Third
Byte Flag

Store Third
Byte into FIFO

Increment
Pointer + 3

?

Clear Running
Status Buffer

?

?
Set Third
Byte Flag

Store Status
into FIFO

Store Data Byte
into FIFO

(do not
increment

pointer here) Ignore Status
Increment

Pointer + 2

Store Data Byte
into FIFO

Store Status
into FIFO

Read Serial Input

Bit 7 = 0 Bit 7 = 1

Third Byte Flag = 1 Yes Is it a
Real-Time
Message?

No

No

Yes

Is this a
Tune Request?

= F6H

Flag = 0
Running Status
Buffer = 0

Buffer
Greater
than 0 Less

than
C0H

Less than E0H

Buffer Less
than F0H

Buffer
Greater
than F0H

Buffer = F2H

Buffer = F3H
or F1H

Buffer >= F0H

Clear Running
Status Buffer

Clear Running
Status Buffer

A-4 Additional Explanations and Application Notes

ASSIGNMENT OF NOTE ON/OFF COMMANDS

If an instrument receives two or more Note On messages with the same key number and MIDI channel,
it must make a determination of how to handle the additional Note Ons. It is up to the receiver as to
whether the same voice or another voice will be sounded, or if the messages will be ignored. The
transmitter, however, must send a corresponding Note Off message for every Note On sent. If the
transmitter were to send only one Note Off message, and if the receiver in fact assigned the two Note
On messages to different voices, then one note would linger. Since there is no harm or negative side
effect in sending redundant Note Off messages this is the recommended practice.

VOICE ASSIGNMENT IN POLY MODE

In Poly mode there are no particular rules which define how to assign voices when more than one Note
On message is received and recognized. If more Note On messages are transmitted than the receiver is
capable of playing, the receiver is free to use any method of dealing with this "overflow" situation (such
as first vs. last note priority). The priority of voice assignments may follow the order in which Note On
messages are received, the receiver's own keyboard control logic, or some other scheme.

When a transmitter sends Note On and Off information to a receiving keyboard which is also being
played, it is important for the receiver to distinguish the source of Note On/Off information. For example,
a Note Off received from MIDI should not turn off a note that is being played on the receiver's own
keyboard. Conversely, releasing a key on the receiver's own keyboard should not turn off a note being
received from MIDI.

"ALL NOTES OFF" FUNCTION WHEN SWITCHING MODES

When a receiver is switching between Omni On/Off and Poly or Mono modes, all notes should be turned
off . This is to avoid any unexpected behavior when the instrument's mode is switched. Caution should
be taken to turn off only those note events received from MIDI and not those played on the receiver's
keyboard.

MIDI MERGING AND ALL NOTES OFF

A sequencer replays previously recorded messages and merges them with any messages received at its
MIDI In. A MIDI merging device combines two incoming data streams in real time. In either case the
result is that a single MIDI data stream is communicating information produced by more than one
transmitter. If an All Notes Off messages is passed through either a sequencer or merging device, then
all connected devices will shut off their notes, though the All Notes Off may have only been intended for
the notes turned on by one specific instrument. When an All Notes Off is received by a sequencer it
should check to make sure that it does not conflict with any notes currently being played. Similarly, if an
All Notes Off message is contained in the recorded sequence, it should not be sent if Note On data for
that channel is being received. A MIDI merging device should feature the ability to selectively filter All
Notes Off messages to avoid this problem.

Mode messages with a second byte greater than 124 should be treated in the same way as the All Notes
Off message since they also perform an All Notes Off function.

MIDI 1.0 Detailed Specification 4.2.1 A-5

THE RELATIONSHIP BETWEEN THE HOLD PEDAL AND "ALL
NOTES OFF"

If Note Off messages are received while the hold pedal (controller 64 (40H)) is 'on' they must be
recognized but not acted upon until the release of the hold pedal. The same is true for the All Notes Off
message. A Hold or Sustain pedal 'On' message takes priority over Note Off and All Notes Off until it is
released.

All Notes Off should force voices to go to the release stage of the envelope, and not terminate the sound
of the notes abruptly.

90 43 40
(G On)

B0 40 7F
(HOLD On)

90 43 00
(G Off)

40 00
(HOLD Off)

B0 7B 00
(All Notes Off)

Sound "envelope" of a note being
created by the receiving instrument

Notes cannot be cleared here by
"All Notes Off", even though Note Off
has been received, since hold is still on.

MIDI Messages Transmitted:

FURTHER DESCRIPTION OF HOLD PEDAL

Hold and Second Release switches use controller number 64 (40H). Proper implementation of the hold
pedal will maintain the envelope's sustain level. A "Hold 2" switch has been defined as controller
number 69 (45H) as a means of implementing all other hold functions (e.g. "freeze" where envelopes etc.
are frozen in their current state) and/or for implementing two different hold functions simultaneously.
"Chord Hold" which holds only the notes held when the foot pedal is switched on, is equivalent to the
Sostenuto controller 66. All notes played after the foot pedal is switched on are performed normally.

PRIORITY OF MIDI RECEIVING

An instrument capable of receiving and processing incoming MIDI data must give priority to its MIDI In
port over its local functions such as the front panel or keyboard. It is critical that incoming data never be
ignored or mishandled due to the processor's attention being elsewhere.

At 31.25 Kbaud, one byte is sent every 320 microseconds, which means that proper handling of the
received data during any long-term or ongoing MIDI communication will require a high speed
microprocessor. For this reason, interrupts and FIFO (first in/first out) buffers are commonly used. As
soon as possible after an interrupt is generated, received data can be stored in a FIFO buffer for
processing later on. This data handling can take much less than 320 µS, allowing time for the
microprocessor to handle other aspects of the instrument's operation.

RELEASE OF OMNI

As a transmitter has no way of knowing what channel a receiver is on it is best to always be able to turn
Omni off by means of front panel controls on an instrument.

A-6 Additional Explanations and Application Notes

BASIC CHANNEL OF A SEQUENCER

To a receiver, the output of a MIDI sequencer is identical to the output of any MIDI transmitter with
the possible exception of added Real Time bytes. A transmitting instrument sends on a particular
channel which a sequencer then records and re-transmits. Thus, a sequencer does not need a Basic
Channel as do other instruments. However, this does not prevent a sequencer from having a Basic
Channel for recognizing mode messages or changing channels.

TRANSPOSING

If key transpose is implemented on a keyboard instrument, the MIDI key number 60 can be assigned to
a physical key other than middle C. Transposition is allowed on both transmitters and receivers. The
transposing system in a device should separately affect the keyboard data and incoming MIDI data
going to the voice module. To avoid confusion it is a good idea to use an indicator to show when key
transpose is active.

MIDI 1.0 Detailed Specification 4.2.1 A-7

MIDI IMPLEMENTATION CHART INSTRUCTIONS

The standard MIDI Implementation Chart is used as a quick reference of transmitter and receiver
functions so that users can easily recognize what messages and functions are implemented in the
instrument. This chart should be included in the users manual of all MIDI products. For example, if a
user intends to connect two MIDI instruments, they might compare the "Transmitted" part of one
instrument's chart, with the "Recognized" part of the other instrument's chart by overlapping them. For
this reason each chart should be the same size and have the same number of lines.

GENERAL

1. The "[]" brackets at the top of the chart is used for the instrument's name such as, [LINEAR
WAVETABLE SYNTHESIZER].

2. The item "MODEL" should be used for the model number, such as "LW-1".

3. The body of the implementation chart is divided into four columns. The first column is the
specific function or item, the next two columns give information on whether the specified
function is transmitted and/or received, and the fourth column is used for remarks. This last
column is useful to explain anything unique to this implementation.

FUNCTION DESCRIPTION

1. BASIC CHANNEL:

Default: Channel which is assigned when power is first applied to unit.
Changed: The channels which can be assigned from the instrument's front panel.

2. MODE:

Default: This is the channel mode used by a Transmitter and Receiver when power is
first applied. This should be written as Mode x (where x is 1 through 4), as shown on

the bottom of sheet.
Messages: These are the mode messages which can be transmitted or received, such as

OMNI ON/OFF, MONO ON, and POLY ON. MONO ON and POLY ON may be
written in the short form "MONO", "POLY".

Altered: This shows the channel modes which are not implemented by a receiver and
the modes which are substituted. For example, if the receiver cannot accept "MONO
ON" mode, but will switch to "OMNI ON" mode in order to receive the MIDI data, the
following expression should be used: "MONO ON > OMNI ON" or "MONO > OMNI".

3. NOTE NUMBER:

Note Number: The total range of transmitted or recognized notes.
True Voice: Range of received note numbers falling within the range of true notes

produced by the instrument.

A-8 Additional Explanations and Application Notes

4. VELOCITY:

NOTE ON/NOTE OFF Velocity is assigned either an "o" for implemented or an "x" for not
implemented. In the space following the "o" or "x" it may be mentioned how the
Note On or Off data is being transmitted.

5. AFTERTOUCH:

"o" for implemented or an "x" for not implemented

6. PITCH BEND:

"o" for implemented or an "x" for not implemented

7. CONTROL CHANGE:

Space is given in this area for listing of any implemented control numbers. An "o" or "x" should be
placed in the appropriate Transmitted or Recognized column and the function of the specified
control number should be listed in the remarks column.

8. PROGRAM CHANGE:

"o" for implemented or an "x" for not implemented. If implemented, the range of numbers should
be included.
True # (Number): The range of the program change numbers which correspond to the

actual number of patches selected.

9. SYSTEM EXCLUSIVE:

"o" for implemented or an "x" for not implemented. A full description of the instrument's System
Exclusive implementation should be included on separate pages.

10. SYSTEM COMMON:

"o" for implemented or an "x" for not implemented. The following abbreviations are used:
Song Pos = Song Position
Song Sel = Song Select
Tune = Tune Request

11. SYSTEM REAL TIME:

"o" for implemented or an "x" for not implemented. The following abbreviations are used:
Clock = Timing Clock
Commands = Start, Continue and Stop

12. AUX. MESSAGES:

"o" for implemented or an "x" for not implemented. The following abbreviations are used:
Aux = Auxiliary
Active Sense = Active Sensing

13. NOTES:
The "Notes" column can be any comments such as:

Power Up messages transmitted, implementation of program changes to additional
memory banks, etc.

Tables T-1

TABLE I

SUMMARY OF STATUS BYTES

STATUS NUMBER DESCRIPTION
 Hex Binary OF DATA

D7--D0 BYTES

Channel Voice Messages

8nH 1000nnnn 2 Note Off

9nH 1001nnnn 2 Note On (a velocity of 0 = Note Off)

AnH 1010nnnn 2 Polyphonic key pressure/Aftertouch

BnH 1011nnnn 2 Control change

CnH 1100nnnn 1 Program change

DnH 1101nnnn 1 Channel pressure/After touch

EnH 1110nnnn 2 Pitch bend change

Channel Mode Messages

BnH 1011nnnn (01111xxx) 2 Selects Channel Mode

System Messages

F0H 11110000 ***** System Exclusive

11110sss 0 to 2 System Common

11111ttt 0 System Real Time

NOTES:
nnnn: N-1, where N = Channel #,

i.e. 0000 is Channel 1, 0001 is Channel 2,
and 1111 is Channel 16.

*****: 0iiiiiii, data, ..., EOX
iiiiiii: Identification
sss: 1 to 7
ttt: 0 to 7
xxx: Channel Mode messages are sent under the same Status Byte as the

Control Change messages (BnH). They are differentiated by the first data
byte which will have a value from 121 to 127 for Channel Mode
messages.

T-2 MIDI 1.0 Detailed Specification 4.2.1

TABLE II

CHANNEL VOICE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 8nH 1000nnnn 0kkkkkkk Note Off
0vvvvvvv vvvvvvv: note off velocity

 9nH 1001nnnn 0kkkkkkk Note On
0vvvvvvv vvvvvvv ≠ 0: velocity

vvvvvvv = 0: note off

 AnH 1010nnnn 0kkkkkkk Polyphonic Key Pressure (Aftertouch)
0vvvvvvv vvvvvvv: pressure value

 BnH 1011nnnn 0ccccccc Control Change (See Table III)
0vvvvvvv ccccccc: control # (0-119)

vvvvvvv: control value

ccccccc = 120 thru 127: Reserved. (See Table IV)

 CnH 1100nnnn 0ppppppp Program Change
ppppppp: program number (0-127)

 DnH 1101nnnn 0vvvvvvv Channel Pressure (Aftertouch)
vvvvvvv: pressure value

 EnH 1110nnnn 0vvvvvvv Pitch Bend Change LSB
0vvvvvvv Pitch Bend Change MSB

NOTES:

1. nnnn: Voice Channel number (1-16, coded as defined in Table I notes)

2. kkkkkkk: note number (0 - 127)

3. vvvvvvv: key velocity
A logarithmic scale is recommended.

4. Continuous controllers are divided into Most Significant and Least Significant Bytes. If only seven bits of resolution
are needed for any particular controllers, only the MSB is sent. It is not necessary to send the LSB. If more resolution is
needed, then both are sent, first the MSB, then the LSB. If only the LSB has changed in value, the LSB may be sent
without re-sending the MSB.

Tables T-3

TABLE III

CONTROLLER NUMBERS

CONTROL NUMBER CONTROL FUNCTION
(2nd Byte value)

 Decimal Hex

0 00H Bank Select
1 01H Modulation wheel or lever
2 02H Breath Controller
3 03H Undefined
4 04H Foot controller
5 05H Portamento time
6 06H Data entry MSB
7 07H Channel Volume (formerly Main Volume)

 8 08H Balance
9 09H Undefined
10 0AH Pan
11 0BH Expression Controller
12 0CH Effect Control 1
13 0DH Effect Control 2

14-15 0E-0FH Undefined
16-19 10-13H General Purpose Controllers (#'s 1-4)
20-31 14-1FH Undefined
32-63 20-3FH LSB for values 0-31

64 40H Damper pedal (sustain)
65 41H Portamento On/Off
66 42H Sostenuto
67 43H Soft pedal
68 44H Legato Footswitch (vv = 00-3F:Normal, 40-7F=Legatto)
69 45H Hold 2
70 46H Sound Controller 1 (default: Sound Variation)
71 47H Sound Controller 2 (default: Timbre/Harmonic Intensity)
72 48H Sound Controller 3 (default: Release Time)
73 49H Sound Controller 4 (default: Attack Time)
74 4AH Sound Controller 5 (default: Brightness)

75-79 4BH-4FH Sound Controllers 6-10 (no defaults)
80-83 50-53H General Purpose Controllers (#'s 5-8)

84 54H Portamento Control
85-90 55-5AH Undefined

91 5BH Effects 1 Depth (formerly External Effects Depth)
92 5CH Effects 2 Depth (formerly Tremolo Depth)
93 5DH Effects 3 Depth (formerly Chorus Depth)
94 5EH Effects 4 Depth (formerly Celeste (Detune) Depth)
95 5FH Effects 5 Depth (formerly Phaser Depth)
96 60H Data increment
97 61H Data decrement
98 62H Non-Registered Parameter Number LSB
99 63H Non-Registered Parameter Number MSB
100 64H Registered Parameter Number LSB
101 65H Registered Parameter Number MSB

102-119 66-77H Undefined
120-127 78-7FH Reserved for Channel Mode Messages

T-4 MIDI 1.0 Detailed Specification 4.2.1

TABLE IIIa

REGISTERED PARAMETER NUMBERS

Parameter Number Function
LSB MSB

00H 00H Pitch Bend Sensitivity
01H 00H Fine Tuning
02H 00H Coarse Tuning
03H 00H Tuning Program Select
04H 00H Tuning Bank Select

Tables T-5

TABLE IV

CHANNEL MODE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

Bn 1011nnnn 0ccccccc Mode Messages
0vvvvvvv

ccccccc = 120: All Sound Off
vvvvvvv = 0

ccccccc = 121: Reset All Controllers
vvvvvvv = 0

ccccccc = 122:Local Control
vvvvvvv = 0, Local Control Off
vvvvvvv = 127, Local Control On

ccccccc = 123: All Notes Off
vvvvvvv = 0

ccccccc = 124: Omni Mode Off (All Notes Off)
vvvvvvv = 0

ccccccc = 125:Omni Mode On (All Notes Off)
vvvvvvv = 0

ccccccc = 126: Mono Mode On (Poly Mode Off)
(All Notes Off)

vvvvvvv = M, where M is the number of
channels.

vvvvvvv = 0, the number of channels equals the
number of voices in the receiver.

ccccccc = 127: Poly Mode On (Mono Mode Off)
(All Notes Off)

vvvvvvv = 0

NOTES:

1. nnnn: Basic Channel number (1-16)

2. ccccccc: Controller number (121 - 127)

3. vvvvvvv: Controller value

T-6 MIDI 1.0 Detailed Specification 4.2.1

TABLE V

SYSTEM COMMON MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

F1H 11110001 0nnndddd MIDI Time Code Quarter Frame
nnn: Message Type
dddd: Values

F2H 11110010 Song Position Pointer
0lllllll lllllll: (Least significant)
0hhhhhhh hhhhhhh: (Most significant)

F3H 11110011 0sssssss Song Select
sssssss: Song #

F4H 11110100 Undefined

F5H 11110101 Undefined

F6H 11110110 none Tune Request

F7H 11110111 none EOX: "End of System Exclusive" flag

Tables T-7

TABLE VI

SYSTEM REAL TIME MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 F8H 11111000 Timing Clock
 F9H 11111001 Undefined
 FAH 11111010 Start
 FBH 11111011 Continue
 FCH 11111100 Stop
 FDH 11111101 Undefined
 FEH 11111110 Active Sensing
 FFH 11111111 System Reset

T-8 MIDI 1.0 Detailed Specification 4.2.1

TABLE VII

SYSTEM EXCLUSIVE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 F0H 11110000 SOX: Start of System Exclusive Status Byte

0iiiiiii System Exclusive Sub-ID (see note 1)
(00 - 7CH) Manufacturer Identification
(7DH) Non Commercial System Exclusive ID
(7EH) Non-Real Time System Exclusive
(7FH) Real Time System Exclusive

0ddddddd
. Any number of data bytes may be sent here, for any purpose, as
. long as they all have a zero in the most significant bit. (see note 2)
.
0ddddddd

 F7H 11110111 EOX: End of System Exclusive

NOTES:

1. 0iiiiiii:

A) Manufacturer identification (0-124). If the first byte of this ID is 0, the following two bytes are used as
extensions to the Manufacturer ID. See Table VIIb for a listing of currently assigned Manufacturer ID numbers.
A Manufacturers ID may be obtained from the MIDI Manufacturers Association.

B) ID 7DH (125) is reserved for non-commercial use (e.g. schools, research, etc.) and is not to be used on any
product released to the public.

C) ID 7EH (126) and 7FH (127) are used for Universal System Exclusive extensions to the MIDI specification.
See Table VIIa for a listing of currently defined Non-Real Time and Real Time messages.

2. 0ddddddd:

All bytes between the System Exclusive Status byte and EOX must have zeroes in the Most Significant Bit -- which
therefore makes them Data Bytes -- with the exception of System Real Time Status Bytes (F8H-FFH) (see Table
VI). Any other Status Byte that appears between the SOX (F0H) and EOX (F7H) will be considered an EOX
message, and terminate the System Exclusive message.

Tables T-9

TABLE VIIa

CURRENTLY DEFINED UNIVERSAL SYSTEM EXCLUSIVE MESSAGES

SUB-ID #1 SUB-ID #2 DESCRIPTION

Non-Real Time (7EH)

00 -- Unused
01 (not used) Sample Dump Header
02 (not used) Sample Data Packet
03 (not used) Sample Dump Request
04 nn MIDI Time Code

00 Special
01 Punch In Points
02 Punch Out Points
03 Delete Punch In Point
04 Delete Punch Out Point
05 Event Start Point
06 Event Stop Point
07 Event Start Points with additional info.
08 Event Stop Points with additional info.
09 Delete Event Start Point
0A Delete Event Stop Point
0B Cue Points
0C Cue Points with additional info.
0D Delete Cue Point
0E Event Name in additional info.

05 nn Sample Dump Extensions
01 Multiple Loop Points
02 Loop Points Request

06 nn General Information
01 Identity Request
02 Identity Reply

07 nn File Dump
01 Header
02 Data Packet
03 Request

08 nn MIDI Tuning Standard
00 Bulk Dump Request
01 Bulk Dump Reply

09 nn General MIDI
01 General MIDI System On
02 General MIDI System Off

7B (not used) End Of File
7C (not used) Wait
7D (not used) Cancel
7E (not used) NAK
7F (not used) ACK

T-10 MIDI 1.0 Detailed Specification 4.2.1

CURRENTLY DEFINED UNIVERSAL SYSTEM EXCLUSIVE MESSAGES - continued

Real Time (7FH)

00 -- Unused
01 nn MIDI Time Code

01 Full Message
02 User Bits

02 nn MIDI Show Control
00 MSC Extensions
01 - 7F MSC Commands

(Detailed in MSC documentation)
03 nn Notation Information

01 Bar Number
02 Time Signature (Immediate)
42 Time Signature (Delayed)

04 nn Device Control
01 Master Volume
02 Master Balance

05 nn Real Time MTC Cueing
00 Special
01 Punch In Points
02 Punch Out Points
03 (Reserved)
04 (Reserved)
05 Event Start points
06 Event Stop points
07 Event Start points with additional info.
08 Event Stop points with additional info.
09 (Reserved)
0A (Reserved)
0B Cue points
0C Cue points with additional info.
0D (Reserved)
0E Event Name in additional into.

06 nn MIDI Machine Control Commands
00 - 7F MMC Commands

(Detailed in MMC documentation)
07 nn MIDI Machine Control Responses

00 - 7F MMC Commands
(Detailed in MMC documentation)

08 nn MIDI Tuning Standard
02 Note Change

NOTES:

1. The standardized format for both Real Time and Non-Real Time messages is as follows:
F0H <ID number> <device ID> <sub-ID#1> <sub-ID#2>...... F7H

2. Additional details and descriptions of MTC MSC and MMC are available as separate documents.

Tables T-11

TABLE VIIb

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS

 NUMBER MANUFACTURER NUMBER MANUFACTURER

American Group
01H Sequential
02H IDP
03H Voyetra/Octave-Plateau
04H Moog
05H Passport Designs
06H Lexicon
07H Kurzweil
08H Fender
09H Gulbransen
0AH AKG Acoustics
0BH Voyce Music
0CH Waveframe Corp
0DH ADA Signal Processors
0EH Garfield Electronics
0FH Ensoniq
10H Oberheim
11H Apple Computer
12H Grey Matter Response
13H Digidesign
14H Palm Tree Instruments
15H JLCooper Electronics
16H Lowrey
17H Adams-Smith
18H Emu Systems
19H Harmony Systems
1AH ART
1BH Baldwin
1CH Eventide
1DH Inventronics
1FH Clarity

 00H 00H 01H Time Warner Interactive
 00H 00H 07H Digital Music Corp.
 00H 00H 08H IOTA Systems
 00H 00H 09H New England Digital
 00H 00H 0AH Artisyn
 00H 00H 0BH IVL Technologies
 00H 00H 0CH Southern Music Systems
 00H 00H 0DH Lake Butler Sound Company
 00H 00H 0EH Alesis
 00H 00H 10H DOD Electronics
 00H 00H 11H Studer-Editech
 00H 00H 14H Perfect Fretworks
 00H 00H 15H KAT
 00H 00H 16H Opcode
 00H 00H 17H Rane Corp.
 00H 00H 18H Anadi Inc.
 00H 00H 19H KMX
 00H 00H 1AH Allen & Heath Brenell
 00H 00H 1BH Peavey Electronics
 00H 00H 1CH 360 Systems
 00H 00H 1DH Spectrum Design and Development
 00H 00H 1EH Marquis Music

 00H 00H 1FH Zeta Systems
 00H 00H 20H Axxes
 00H 00H 21H Orban
 00H 00H 24H KTI
 00H 00H 25H Breakaway Technologies
 00H 00H 26H CAE
 00H 00H 29H Rocktron Corp.
 00H 00H 2AH PianoDisc
 00H 00H 2BH Cannon Research Group
 00H 00H 2DH Rogers Instrument Corp.
 00H 00H 2EH Blue Sky Logic
 00H 00H 2FH Encore Electronics
 00H 00H 30H Uptown
 00H 00H 31H Voce
 00H 00H 32H CTI Audio, Inc. (Music. Intel Dev.)
 00H 00H 33H S&S Research
 00H 00H 34H Broderbund Software, Inc.
 00H 00H 35H Allen Organ Co.
 00H 00H 37H Music Quest
 00H 00H 38H APHEX
 00H 00H 39H Gallien Krueger
 00H 00H 3AH IBM
 00H 00H 3CH Hotz Instruments Technologies
 00H 00H 3DH ETA Lighting
 00H 00H 3EH NSI Corporation
 00H 00H 3FH Ad Lib, Inc.
 00H 00H 40H Richmond Sound Design
 00H 00H 41H Microsoft
 00H 00H 42H The Software Toolworks
 00H 00H 43H Niche/RJMG
 00H 00H 44H Intone
 00H 00H 47H GT Electronics/Groove Tubes
 00H 00H 4FH InterMIDI, Inc.
 00H 00H 49H Timeline Vista
 00H 00H 4AH Mesa Boogie
 00H 00H 4CH Sequoia Development
 00H 00H 4DH Studio Electronics
 00H 00H 4EH Euphonix
 00H 00H 4FH InterMIDI
 00H 00H 50H MIDI Solutions
 00H 00H 51H 3DO Company
 00H 00H 52H Lightwave Research
 00H 00H 53H Micro-W
 OOH OOH 54H Spectral Synthesis
 OOH OOH 55H Lone Wolf
 00H 00H 56H Studio Technologies
 00H 00H 57H Peterson EMP
 00H 00H 58H Atari
 00H 00H 59H Marion Systems
 00H 00H 5AH Design Event
 00H 00H 5BH Winjammer Software
 00H 00H 5CH AT&T Bell Labs

T-12 MIDI 1.0 Detailed Specification 4.2.1

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS - continued

 NUMBER MANUFACTURER NUMBER MANUFACTURER

 00H 00H 5EH Symetrix
 00H 00H 5FH MIDI the World
 00H 00H 60H Desper Products
 00H 00H 61H Micros 'N MIDI
 00H 00H 62H Accordians Intl
 00H 00H 63H EuPhonics
 00H 00H 64H Musonix
 00H 00H 65H Turtle Beach Systems
 00H 00H 66H Mackie Designs
 00H 00H 67H Compuserve
 00H 00H 68H BES Technologies
 00H 00H 69H QRS Music Rolls
 00H 00H 6AH P G Music
 00H 00H 6BH Sierra Semiconductor
 00H 00H 6CH EpiGraf Audio Visual
 00H 00H 6DH Electronics Deiversified
 00H 00H 6EH Tune 1000
 00H 00H 6FH Advanced Micro Devices
 00H 00H 70H Mediamation
 00H 00H 71H Sabine Music
 00H 00H 72H Woog Labs
 00H 00H 73H Micropolis
 00H 00H 74H Ta Horng Musical Inst.
 00H 00H 75H eTek (formerly Forte)
 00H 00H 76H Electrovoice
 00H 00H 77H Midisoft
 00H 00H 78H Q-Sound Labs
 00H 00H 79H Westrex
 00H 00H 7AH NVidia
 00H 00H 7BH ESS Technology
 00H 00H 7CH MediaTrix Peripherals
 00H 00H 7DH Brooktree
 00H 00H 7EH Otari
 00H 00H 7FH Key Electronics
 00H 00H 80H Crystalake Multimedia
 00H 00H 81H Crystal Semiconductor
 00H 00H 82H Rockwell Semiconductor

European Group
20H Passac
21H SIEL
22H Synthaxe
24H Hohner
25H Twister
26H Solton
27H Jellinghaus MS
28H Southworth Music Systems
29H PPG
2AH JEN
2BH SSL Limited
2CH Audio Veritrieb
2FH Elka
30H Dynacord
31H Viscount
33H Clavia Digital Instruments
34H Audio Architecture

35H GeneralMusic Corp.
39H Soundcraft Electronics
3BH Wersi
3CH Avab Electronik Ab
3DH Digigram
3EH Waldorf Electronics
3FH Quasimidi

 00H 20H 00H Dream
 00H 20H 01H Strand Lighting
 00H 20H 02H Amek Systems
 00H 20H 04H Böhm Electronic
 00H 20H 06H Trident Audio
 00H 20H 07H Real World Studio
 00H 20H 09H Yes Technology
 00H 20H 0AH Audiomatica
 00H 20H 0BH Bontempi/Farfisa
 00H 20H 0CH F.B.T. Elettronica
 00H 20H 0DH MidiTemp
 00H 20H 0EH LA Audio (Larking Audio)
 00H 20H 0FH Zero 88 Lighting Limited
 00H 20H 10H Micon Audio Electronics GmbH
 00H 20H 11H Forefront Technology
 00H 20H 13H Kenton Electronics
 00H 20H 15H ADB
 00H 20H 16H Marshall Products
 00H 20H 17H DDA
 00H 20H 18H BSS
 00H 20H 19H MA Lighting Technology
 00H 20H 1AH Fatar
 00H 20H 1BH QSC Audio
 00H 20H 1CH Artisan Classic Organ
 00H 20H 1DH Orla Spa
 00H 20H 1EH Pinnacle Audio
 00H 20H 1FH TC Electonics
 00H 20H 20H Doepfer Musikelektronik
 00H 20H 21H Creative Technology Pte
 00H 20H 22H Minami/Seiyddo
 00H 20H 23H Goldstar
 00H 20H 24H Midisoft s.a.s di M. Cima
 00H 20H 25H Samick
 00H 20H 26H Penny and Giles
 00H 20H 27H Acorn Computer
 00H 20H 28H LSC Electronics
 00H 20H 29H Novation EMS
 00H 20H 2AH Samkyung Mechatronics
 00H 20H 2BH Medeli Electronics
 00H 20H 2CH Charlie Lab
 00H 20H 2DH Blue Chip Music Tech
 00H 20H 2EH BEE OH Corp

Tables T-13

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS - continued

 NUMBER MANUFACTURER NUMBER MANUFACTURER

Japanese Group (as of 10/92)
40H Kawai
41H Roland
42H Korg
43H Yamaha
44H Casio
46H Kamiya Studio
47H Akai
48H Japan Victor
49H Mesosha
4AH Hoshino Gakki
4BH Fujitsu Elect
4CH Sony
4DH Nisshin Onpa
4EH TEAC
50H Matsushita Electric
51H Fostex
52H Zoom
53H Midori Electronics
54H Matsushita Communication Industrial
55H Suzuki Musical Inst. Mfg.

T-14 MIDI 1.0 Detailed Specification 4.2.1

TABLE VIII

ADDITIONAL OFFICIAL SPECIFICATION DOCUMENTS PUBLISHED BY
THE MIDI MANUFACTURERS ASSCOCIATION

DOCUMENT TITLE DESCRIPTION

MIDI Time Code Recommended Practice RP004/RP008
MIDI Show Control 1.1 Recommended Practice RP002 /RP014*
MIDI Machine Control Recommended Practice RP013
Standard MIDI Files Recommended Practice RP001
General MIDI System Level 1 Recommended Practice RP003

*New Version, February 1996

	Contents
	Overview
	Introduction
	Hardware
	Data Format
	Message Types
	Channel Messages
	System Messages

	Data Types
	Status Bytes
	Running Status
	Unimplemented Status
	Undefined Status

	Data Bytes

	Channel Modes
	Power-Up Default Conditions

	Details
	Channel Voice Messages
	Types of Voice Messages
	Note Number
	Velocity
	Note-Off

	Control Change
	Controller Numbers
	Global Controlllers
	General Purpose Controllers
	Controller Effect
	Bank Select
	Legato Footswitch
	Effects Controller Redefinition
	Sound Controllers
	Portamento Controller
	Registered and Non-Registered Paremeter Numbers

	Program Change
	Pitch Bend Change
	Aftertouch

	Channel Mode Messages
	Mode Messages as All Notes Off Messages
	The Basic Channel of an Instrument
	Receiver's Mode (Omni On/Off & Poly/Mono)
	Mono Mode
	Omni Off/Mono
	Omni On/Mono

	Modes Not Implemented in a Receiver
	All Notes Off
	All Sound Off
	Reset All Controllers
	Local Control

	System Common Messages
	MTC Quarter Frame
	Song Position Pointer
	Song Select
	Reception of Song Position and Song Select
	Tune Request
	EOX

	System Real Time Messages
	Start or Continue Messages
	Stop Message
	Relationship Between Clocks and Commands
	Priority of Commands
	Active Sensing
	System Reset

	System Exclusive Messages
	Distribution of ID Numbers
	Universal System Exclusive
	Device ID
	Sample Dump Standard
	Generic Handshaking Messages

	Device Inquiry
	File Dump
	MIDI Tuning
	General MIDI System Messages
	MTC Full Message, User Bits, Real Time Cueing
	MIDI Show Control
	Notation Information
	Device Control (Master Volume and Master Balance)
	MIDI Machine Ccontrol

	Appendix: Additional Explanations and Application Notes
	Running Status
	Assignment of Note On/Off Commands
	Voice Assignement in Poly Mode
	"All Notes Off" Function when Switching Modes
	MIDI Merging and All Notes Off
	Hold Pedal and All Notes Off
	Further Description of Hold Pedal
	Priority of MIDI Receiving
	Release of Omni
	Basic Channel of a Sequencer
	Transposing
	MIDI Implementation Chart Instructions

	Tables
	Table I: Summary of Status Bytes
	Table II: Channel Voice Messages
	Table III: Controller Numbers
	Table IIIa: Registered Parameter Numbers
	Table IV: Channel Mode Messages
	Table V: System Common Messages
	Table VI: System Real Time Messages
	Table VII: System Exclusive Messages
	Table VIIa: Currently Defined Universal System Exclusive Messages
	Table VIIb: System Exclusive Manufacturer's ID Numbers
	Table VIII: Additional Official MMA Specification Documents

