
Using the IC Reals Library

Lindsay Errington and Reinhold Heckmann

November 11, 2023

1 Introduction

The Imperial College Exact Real Arithmetic Library is a collection of C
types and functions which implement exact real arithmetic. The functions
allow one to construct objects representing real numbers and then to demand
information, for example some number of decimal digits, from those objects.
The user need not specify a precision in advance. All the digits retrieved are
correct and further digits can be demanded.

The library includes arithmetic operations as well as a suite of analytic
functions on reals. In addition to a real type, the library also includes a lazy
boolean type and a collection of predicates on reals, boolean operations and
a conditional construct.

The representation of reals is based on linear fractional transformations
(LFTs). The underlying theory was developed by Abbas Edalat, Martin
Escardo, Reinhold Heckmann, Peter Potts, Philipp Sünderhauf and Lindsay
Errington (lazy booleans).

The library was written by Lindsay Errington with contributions from
Marko Krznaric and Reinhold Heckmann.

This document describes the types and functions provided by the library.
It is not an introduction to exact real arithmetic nor does it describe the
details of the LFT approach.

1

2 Copyright

All software in this distribution comes under the following copyright notice:

Copyright © 1998-2000 by Imperial College of Science, Technology and
Medicine

Permission to use, copy, modify, and distribute this software and its docu-
mentation for any non-commercial purpose and without fee is hereby granted,
provided that this copyright notice appears in all copies. The library can-
not be used directly or indirectly for any commercial application without a
licence from Imperial College.

Neither Imperial College nor Lindsay Errington make representations
about the suitability of this software for any purpose. It is provided “as
is” without express or implied warranty.

3 Installation

To install the library it is necessary to edit the Makefile and change REALDIR
to point to the root of the Real Library source tree.

Also, the library requires the GNU Multiple Precision Arithmetic Library
(GMP) (Version 3.1). The Makefile defines a variable GMPDIR which is as-
sumed to be the root directory of the GMP installation.

Assuming the Makefile has been edited such that REALDIR and GMPDIR

point to the respective directories, then the command

make

will create the real library. To remove the library and all binaries, type:

make clean

2

4 Using the library

All applications which call functions in the library must include the file
real.h. This file defines all the types and prototypes for all functions ex-
ported from the library. In particular the file defines the types Real and
Bool corresponding to lazy reals and lazy booleans. The file real.h includes
gmp.h.

The user must call the function

initReals();

before invoking any other functions in the library. This function should be
called only once.

5 Types

The main purpose of the library is to provide a type Real of real numbers.
Since it requires the GNU Multiple Precision Arithmetic Library (GMP) as
well, it also provides GMP’s big integer type mpz t as a byproduct. Most
of the functions defined by the library come in a number of instances for
different types. These instances are named using suffixes abbreviating type
names; e.g. the suffix R indicates the type Real. The full list is given by the
following table.

Abbreviation Prototype Denotation

R Real x x : R
Int int x x : Z, x machine integer

Z mpz t x x : Z, x GMP integer

QInt int a, int b a
b
: Q, a, b machine integers

QZ mpz t a, mpz t b a
b
: Q, a, b GMP integers

Usually, the specialised functions are more efficient than the general ones.
The possibility of using machine integers is particularly useful since these
integers are readily available and need not be set up specially.

3

6 Arithmetic

The basic functions for addition, subtraction, multiplication and division
occur in a general form operating on two reals, and in various specialised
forms involving integers. The available functions are listed in Table 1.

Real neg R(Real x) −x

Real abs R(Real x) |x|
Real add R R(Real x, Real y)

Real add R Int(Real x, int y)

Real add R Z(Real x, mpz t y)

x+ y

Real add R QInt(Real x, int a, int b)

Real add R QZ(Real x, mpz t a, mpz t b)
x+ a

b

Real sub R R(Real x, Real y)

Real sub R Int(Real x, int y)

Real sub Int R(int x, Real y)

x− y

Real sub R QInt(Real x, int a, int b) x− a
b

Real sub QInt R(int a, int b, Real x) a
b
− x

Real mul R R(Real x, Real y)

Real mul R Int(Real x, int y)

Real mul R Z(Real x, mpz t y)

x× y

Real mul R QInt(Real x, int a, int b)

Real mul R QZ(Real x, mpz t a, mpz t b)
x× a

b

Real div R R(Real x, Real y)

Real div R Int(Real x, int y)

Real div Int R(int x, Real y)

x
y

Real div R QInt(Real x, int a, int b) x/a
b
= bx

a

Real div QInt R(int a, int b, Real x) a
b
/x = a

bx

Real pow R R(Real x, Real y) xy

Table 1: Primitive arithmetic functions

The following two functions define the rational number a
b
, considered as

a real:

4

Real real QInt(int a, int b)
Real real QZ(mpz t a, mpz t b)

Real numbers are implemented using linear fractional transformations
(LFTs). Users can construct LFT functions explicitly. The following two
functions compute the expression ax+b

cx+d
:

Real lft R Int(Real x, int a, int b, int c, int d)
Real lft R Z(Real x, mpz t a, mpz t b, mpz t c, mpz t d)

The next two functions yield the even more complicated expression axy+bx+cy+d
exy+fx+gy+h

:

Real lft R R Int(Real x, Real y, int a, int b, . . . , int h)
Real lft R R Z(Real x, Real y, mpz t a, mpz t b, . . . , mpz t h)

Examples:

• To compute y = x+ 1 (x real), use y = add_R_Int (x, 1);

This is both simpler and more efficient than to use

one = real_QInt (1, 1); y = add_R_R (x, one);

• To compute y = x+1
x−1

, use

y = lft_R_Int (x, 1, 1, 1, -1);

This is both simpler and more efficient than to use

y = div_R_R (add_R_Int (x, 1), sub_R_Int (x, 1));

• To compute z = 2x+y
xy−1

, use

z = lft_R_R_Int (x, y, 0, 2, 1, 0,

1, 0, 0, -1);

This is both shorter and more efficient than to use

num = add_R_R (mul_R_Int (x, 2), y);

den = sub_R_Int (mul_R_R (x, y), 1);

z = div_R_R (num, den);

(We admit that both versions are not quite readable.)

7 Special functions

There are the usual standard functions, each existing in three versions, one
for a real argument, one for a rational argument made from machine integers,

5

and one for a rational argument made from GMP integers. Often, the rational
version will be more efficient (sometimes, it is just mapped to the real version,
but it is offered anyway for uniformity and convenience). The general pattern
is illustrated at the square root function:

Real sqrt R(Real x) to compute
√
x;

Real sqrt QInt(int a, int b) to compute
√

a
b
;

Real sqrt QZ(mpz t a, mpz t b) to compute
√

a
b
.

In the following list of functions, we enumerate only the ‘R’ versions.

Basic: sqrt R for
√
x, exp R for ex, log R for natural logarithm;

Trigonometric: sin R, cos R, tan R, sec R, cosec R, cotan R

Inverse trigonometric: asin R, acos R, atan R, asec R, acosec R, acotan R

Hyperbolic: sinh R, cosh R, tanh R, sech R, cosech R, cotanh R

Inverse hyperbolic: asinh R, acosh R, atanh R, asech R, acosech R, acotanh R

In addition, there are the two predefined constants Real Pi and Real E.

8 Forcing, printing and conversion

When working with the library, it is best to think of real numbers as infi-
nite digit streams (but these digit expansions do not correspond directly to
any familiar binary or decimal system). Each finite prefix corresponds to a
rational interval (much as the finite prefix 3.14 of 3.14159. . . corresponds to
the interval [3.14, 3.15]). Thus, if more and more digits of the stream are
computed, the result is a nested sequence of intervals [a1, b1] ⊇ [a2, b2] ⊇ · · ·
which provide increasingly better approximations to the real number.

If a real number is set up and assigned to a variable, an object is created
which records the way the number was constructed, but no digits are actually
calculated. It is only when the number is “forced” that a finite prefix of the
digit stream is computed.

There are two ways to specify the amount of forcing: the first, force R Digs,
is by indicating the number of digits to be computed. Unfortunately, there
is no simple rule telling the size of the resulting interval. This is the reason
why there is a second force function, force R Dec, which forces a real number
until an interval is obtained which guarantees a certain decimal precision.

6

void force R Digs(Real x, int n)
This computes at least the first n digits of the digit stream describing the
value of the argument x.

void force R Dec(Real x, int n)
This computes an approximating interval for x whose size is at most 10−n.

void print R(Real x)
This takes whatever information about the value of x is currently available
and prints it as an interval (no forcing).

void print R Digs(Real x, int n)
This first calls force R Digs(x, n) and prints the interval which results from
this forcing.

void print R Dec(Real x, int n)
This first calls force R Dec(x, n) and prints the resulting interval.

double realToDouble(Real x)
This takes whatever information about the value of x is currently available,
and converts one of the end-points of this interval to a double precision
floating point value.

void force B(Bool b, int n)
This can be called to force the evaluation of a boolean. When b is viewed
as a stream, the argument n indicates the maximum depth in the stream to
examine to determine the value of the boolean.

Boolean boolValue(Bool b)
This is a macro which returns the value of a boolean. This may be one of
three constants: LAZY TRUE, LAZY FALSE or LAZY UNKNOWN

Real realError(char* string)
This function “computes” and returns a kind of placeholder for a real number
which is fine as long as it is not forced. But if this placeholder is forced to
produce some digits, then it causes the program to be aborted. The argument
string provided in the call of realError is printed as an error message.
Real realDelay(Delay Fun f, Delay Arg x)
This function yields a closure for the function f applied to x. In other words,
it denotes the real f (x) but the function call is not made until the closure is
forced. An example of its use is given in the next section.

7

9 Predicates, Boolean operations and condi-

tionals

The library introduces a new type Bool for Boolean values which serves
as the result type of predicates. Therefore, it must also introduce its own
versions of Boolean operations and its own conditional, which is a function
reminiscent of Dijkstra’s guarded commands. We shall shortly see why this
was done, but first we introduce the corresponding functions.

Table 2 shows the available predicates:

Bool lt R 0(Real x) x < 0

Bool lt R QInt(Real x, int a, int b) x < a
b

Bool lt R R(Real x, Real y) x < y

Bool ltEq R 0(Real x) x ≤ 0

Bool ltEq R QInt(Real x, int a, int b) x ≤ a
b

Bool ltEq R R(Real x, Real y) x ≤ y

Bool gt R 0(Real x) x > 0

Bool gt R QInt(Real x, int a, int b) x > a
b

Bool gt R R(Real x, Real y) x > y

Bool gtEq R 0(Real x) x ≥ 0

Bool gtEq R QInt(Real x, int a, int b) x ≥ a
b

Bool gtEq R R(Real x, Real y) x ≥ y

Table 2: Predicates on reals

Boolean values may be combined with the operators presented in Table 3:

8

Bool and B B(Bool x, Bool y) x ∧ y

Bool or B B(Bool x, Bool y) x ∨ y

Bool not B(Bool x) ¬x

Table 3: Boolean operators

Finally, the conditional is a function with a variable number of arguments:

Real realIf(int n, Bool b1, Real x1, . . . , Bool bn, Real xn)

This function takes an integer as its first argument, followed by a variable
number of guard/value pairs. The integer argument should tell the number
of these pairs. The variable argument list is implemented with stdarg(3).

Roughly spoken, the function evaluates the guards b1, . . . , bn, then chooses
non-deterministically one of the guards which happened to be true, and re-
turns the corresponding value. Before we can provide a more detailed de-
scription, we must say more about the type Bool and the behaviour of the
predicates.

Recall that an element of Real is implemented as a digit stream, whose
initial prefixes provide a shrinking sequence of intervals approximating a real
number. Correspondingly, the elements of type Bool are implemented as
sequences of “truth intervals”. These sequences usually start out with the
interval Unknown = [False, True], which may at some later stage be refined
to either False or True.

Example: Table 4 shows how nested sequences of intervals are mapped to
sequences of truth values by the predicate gtEq R 0.

[−3, 2] Unknown [−2, 3] Unknown

[−2, 1] Unknown [−1, 2] Unknown

[−1.5, 0.5] Unknown [−0.5, 1.5] Unknown

[−1, 0] Unknown [0, 1] True

[−0.8,−0.2] False [0.2, 0.8] True

[−0.7,−0.3] False [0.3, 0.7] True
...

...
...

...

Table 4: Action of the predicate gtEq R 0

9

Thus, the sequence of truth values computed by gtEq R 0(x) will eventu-
ally reach True if x > 0, and will eventually reach False if x < 0. If the exact
value of x happens to be 0, it is possible that the sequence of truth values
remains Unknown for ever—this happens if all the intervals [a, b] approximat-
ing x have the property a < 0 < b. Yet it is also possible that the sequence
switches to True—this happens if there is an approximating interval [a, b]
with a = 0. Which of these two possibilities occur depends on the way how
x was set up, and on implementation details. But it should be remembered
that gtEq R 0 may remain undecided for ever when applied to 0.

The Boolean operations produce their output stream by acting on their
input stream(s) element by element, i.e. to produce the nth element of the
output stream, the nth input element(s) of the input stream(s) are combined
according to Table 5, where the truth values have been abbreviated by U, F,
and T, and the operations by logical symbols.

x T F U
¬x F T U

∧ T F U
T T F U
F F F F
U U F U

∨ T F U
T T T T
F T F U
U T U U

Table 5: Action of the Boolean operators

Now, we can return to the conditional

Real realIf(int n, Bool b1, Real x1, . . . , Bool bn, Real xn)

This function behaves as follows: It constructs a cyclic list of guard/value
pairs. Starting with the first pair, realIf forces the guard to compute an
element of the resulting Boolean stream. If the value of this element is True,
the real number associated with this guard is returned. If the value is False,
the pair is removed from the list. If the value remains Unknown, then realIf

tries the next pair. In this way, the function cycles through the list forcing
each guard in turn until a guard becomes True. If the list becomes empty (all
the guards are False), then realIf issues an error message. If some guards
are remaining Unknown for ever, realIf will not terminate. Some examples
will clarify the situation.

realIf (2, lt_R_QInt (x, 1, 1), 0, gt_R_0(x), 1)

means x < 1 → 0 [] x > 0 → 1. For x = 1
2
, the result is unpredictable; it

depends on the actual sequence of intervals which approximate 1
2
. On the

other hand, there is no risk of non-termination or error since at least one

10

guard will eventually yield True for any x.

realIf (2, ltEq_R_0(x), neg_R(x), gtEq_R_0(x), x)

means x ≤ 0 → −x [] x ≥ 0 → x. As an implementation of |x|, this works
well for all x ̸= 0, while there is a considerable risk of non-termination for
x = 0. (Fortunately, there is the predefined function abs R).

Suppose you have an implementation sqrt1 for square root which works
only for arguments in the interval (1

4
, 4), but not for arguments near 0 or very

big arguments. With this knowledge, you can set up the following function:

√
x = (x > 1

4
∧ x < 4 → sqrt1(x) []

x ≥ 0 ∧ x < 1
2

→ 1
2

√
4x []

x > 2 → 2
√
x/4 []

x < 0 → ???)

Notice how the guards overlap: if the second guard were x ≥ 0 ∧ x ≤ 1
4
,

then there would be a considerable risk of non-termination for x = 1
4
. By

the overlap, this non-termination is prevented—without introducing non-
determinism since the values following these guards are semantically equal
in the overlap region. Similarly, the first and third guard overlap to prevent
non-termination for x = 4. Yet notice that the function does not terminate
for x = 0 . . .

As a C program, the above function appears in figure 1. Note the use of
delays to prevent endless eager recursion.

As the last example, suppose you want to iterate a function f until the
difference between two consecutive values in the iteration is smaller than
some threshold eps. This can be done by the following recursive function:

Real iter (Real x) {

Real y = f(x);

Real d = abs_R (sub_R_R (x, y)); /* d = |x - y| */

return realIf (2,

lt_R_R (d, eps),

y,

gt_R_R (d, eps2),

realDelay((Delay_Fun) iter, (Delay_Arg) y));

}

where eps2 is eps/2. By using eps2, the two guards overlap non-trivially, and

11

Real sqrt (Real x) {

return realIf (4,

and_B_B (gt_R_QInt (x, 1, 4), lt_R_QInt (x, 4, 1)),

sqrt1 (x),

and_B_B (gtEq_R_0, lt_R_QInt (x, 1, 2)),

div_R_Int (

realDelay(

(Delay_Fun) sqrt,

(Delay_Arg) mul_R_Int (x, 4)),

2),

gt_R_QInt (x, 2, 1),

mul_R_Int (

realDelay(

(Delay_Fun) sqrt,

(Delay_Arg) div_R_Int (x, 4)),

2),

lt_R_0 (x),

realError ("Square root of negative number")

);

}

Figure 1: Example of conditional with delays.

12

non-termination at d = eps is prevented (of course, the iteration still fails to
terminate if d never gets small).

10 Extracting digits following forcing

The functions in this section provide access to the internal representation of
real numbers. They are not very useful for ordinary users of the library.

void retrieveInfo(Real x, Sign ∗sign, int ∗count, mpz t digits)

This function retrieves the information that is currently available on x. The
sign of x is stored in sign, the number of digits calculated so far is stored
in count, and a compressed representation of all these digits is deposited
in digits. The variable digits must be initialised with the GMP function
mpz init prior to calling retrieveInfo. The real argument x is unchanged
by the call.

From a compressed digit representation as it is provided by retrieveInfo,
the individual digits can be extracted by means of

Digit takeDigit(int ∗count, mpz t digits)

This function should only be called if digits contains at least one digit. It
returns the most significant digit contained in digits, removes this digit from
digits, and decreases the counter count by 1. Thus, successive calls yield
successive digits.

An example of the use of these two functions is given in Figure 2.

Note the two functions signToString and digitToString which convert
signs and digits to strings for output.

11 Environment variables

The library uses three environment variables to control its runtime behaviour.
These variables are as follows:

ICR STACK SIZE=n This sets the runtime stack to n × k words. The de-
fault is n = 20 for 20k words. It is unlikely that the stack size needs to

13

Real x;

mpz_t digits;

Sign sign;

Digit digit;

int count;

...

x = tan_R(y);

force_R_Digs(x, 20);

mpz_init(digits);

retrieveInfo(x, &sign, &count, digits);

printf("%s ", signToString(sign));

while (count > 0) {

digit = takeDigit(&count, digits);

printf("%s ", digitToString(digit));

}

printf("\n");

Figure 2: Taking digits one-by-one.

be adjusted. If you get a “stack overflow” at runtime, it is more likely
that the algorithm for some function is not sufficiently converging for a
given argument. Assuming the default has been set to something other
than 1, try setting the environment variable ICR DEFAULT FORCE COUNT=1

and executing your program again.

ICR DEFAULT FORCE COUNT=n Sometimes it is necessary to force an arbi-
trary number of digits from an LFT. This can happen, for example,
when a predicate is forced which in turn must force some number of
digits from its real argument. In theory, one would always want to
force as few digits as possible (i.e. 1 digit) to avoid unnecessary com-
putation. In practice, it is more efficient to demand more than one
digit. The value of ICR DEFAULT FORCE COUNT is the number of digits
forced in such circumstances. It is also the number of digits forced from
an argument to a linear fractional transformation when ϵ − δ analysis
for the transformation yields a value ≤ 0. The default is n = 1. The
maximum reasonable value is n = 4.

ICR FORCE DEC UPPER BOUND=n When extracting information from reals,
the library works with “digits”. Each digit gives a fixed amount of
information. Usually, however, a user wishes to extract enough infor-
mation to ensure some decimal precision. The functions force R Dec

14

and print R Dec are provided to retrieve information from a real to a
specified decimal precision. Unfortunately, there is not always a direct
correspondence between a number of digits and a decimal precision. As
a number approaches infinity, more digits are needed to bound it above.
This variable sets a bound on the number of digits to retrieve from a
real to bound it above before giving up. The default is n = 10000.

12 The daVinci interface

For debugging and instruction, the library is instrumented to work with the
graph visualisation tool daVinci. But be warned that much of this visualisa-
tion is only comprehensible to insiders. When a program has been compiled
with daVinci enabled, a separate daVinci window will be created when init-

Reals is called. Thereafter, any calls to force R Digs or force R Dec will
lead to control being transferred to the daVinci window.

Once started the daVinci window provides a collection of buttons to con-
trol the execution of a real program. The buttons are as follows:

Stops execution.

Enabled when there is work on the stack. This button starts execution.

Enabled when there is work on the stack. This single steps execution.

When enabled, it means the stack is empty. This button returns control
to the C program.

This button is not implemented. Ultimately it will be used to invoke the
garbage collector.

In addition, when the program is stopped, the user can click the right
button over any object in the heap. This gives a popup menu of which only
the first entry is implemented. It can be used to print (in the main program
window) the contents of the selected heap object. This is typically a linear
fractional transformation (nearly all functions in the library are implemented
as compositions of linear fractional transformations).

15

13 Compilation flags

There are a number of compilation flags in the Makefile. With the exception
of those listed below, it is unwise to change these flags.

-DDAVINCI When set, the library will connect to the daVinci graph visu-
alisation tool. In this mode, all objects in the heap and all information
flow is displayed in a separate daVinci window. Computation is con-
trolled from the daVinci window. The user can run, stop and single-
step the activities of the program, which mainly consist of emission and
absorption of LFTs, and examine the contents of objects in the heap.

-DDEFAULT FORCE COUNT=n This sets the default force count to use when
it is not given by the environment variable ICR DEFAULT FORCE COUNT.

-DTRACE=val This enables tracing of force methods. When set to 0, trac-
ing is disabled. When set to 1, tracing is enabled. Finally, when set to
traceOn, tracing can be enabled and disabled at runtime under soft-
ware control via the function debugTrace(int b) where b is 1 to enable
tracing and 0 to stop tracing.

-DSTACK SIZE=n This sets stack size to use when it is not given by the
environment variable ICR STACK SIZE.

-DFORCE DEC UPPER BOUND=n This is the default value used when the en-
vironment variable ICR FORCE DEC UPPER BOUND is absent.

14 Problems

The library is still under development. Future versions of the library will
have specialized versions of the analytic functions for rational arguments. A
document describing the implementation is also planned. The most serious
omission from the present version of the library is a garbage collector.

16

